

Page intentionally blank

Contents

1.	Agricultural Land Classification for the New Overton Substation Are	}a1
1.1	Introduction Background Site description Definitions	1 1 1 2
1.2	Desk study Information Sources Soils Agricultural land classification Aerial imagery	3 4 4 5
1.3	Site Survey Methodology Site description Soils Agroclimatic data Direct limitations Interactive limitations	5 5 5 6 8 9
1.4	Overall agricultural land classification	9
1.5	Summary and Conclusions	10
	Table 1.1 - Data sources used to inform the agriculture and soils assessment Table 1.2 - Summary of soil types and soil erodibility risk for the soil within the study	3
	area	4
	Table 1.3 – Interpolated agroclimatic data for the Site Table 1.4 – Summary of Agricultural Land Classification at the Site	8 10

Annex 11B.1 - Soil Survey Record and ALC Breakdown

Annex 11B.2 – Droughtiness Calculations

Annex 11B.3 - Laboratory Results

Date Version Status Description/change
01/11/2022 A Final First Issue

1. Agricultural Land Classification for the New Overton Substation Area

1.1 Introduction

Background

1.1.1 Agricultural Land Classification studies have been undertaken to provide an accurate baseline for areas of permanent development or where long-term soil disturbance is likely to take place as part of the Yorkshire Green Energy Enablement Project (referred to as the Project or Yorkshire GREEN). These survey locations were agreed through consultation with Natural England and have informed the Environmental Impact Assessment for **Chapter 11 Agriculture and Soils (Volume 5, Document 5.2.11).**

Site description

- 1.1.2 This appendix covers the areas where Overton Substation is proposed, the survey boundary (referred to in this document as 'the Site') can be seen on **Figure 11.5**, **Volume 5**, **Document 5.4.11**.
- 1.1.3 The Site is located within the administrative area of North Yorkshire County Council, on the border of the City of York, and lies to approximately 8 km northwest of York, approximate central grid reference SE557573.
- 1.1.4 The Site comprises two agricultural fields covering an area of approximately 46 ha. Surrounding land use includes further agricultural fields to the north, south and east of the Site. Immediately west of the Site lies a rail track. The north-western field and south-eastern field area separated by a road.
- 1.1.5 Areas of non-agricultural land were noted during the survey, these included a pond in the middle of the Site and a woodland strip to the west of the Site, as well as roads.
- 1.1.6 The entire site is typically flat lying, with the elevation ranging from ca. 15 to 18 m ASL.
- 1.1.7 The weather was sunny with some clouds.
- 1.1.8 Plate 1 shows a view of the Site conditions on the day of the survey. The weather was overcast with sunny intervals and one short rain shower.

Plate 1 - Site condition on the day of the survey (south-eastern field)

Definitions

- 1.1.9 The **Agricultural Land Classification** (ALC) system was devised by the Ministry of Agriculture, Fisheries and Food (MAFF) (1988)¹ and is the standard method for determining the quality of agricultural land in England and Wales according to its versatility, productivity and workability, based upon inter-related parameters including climate, relief, soil characteristics and drainage; i.e. ALC assesses land quality based upon the type and level of agricultural production the land can potentially support. The ALC grade is based on the most limiting factor to agricultural production, this may be a climatic limitation, site limitation (climate, gradient, risk of flooding, microrelief), soil limitation (texture and structure, depth, stoniness, chemical), or an interactive limitation (soil wetness, droughtiness, erosion). The ALC places land into one of five grades: Grade 1 (excellent); Grade 2 (very good); Grade 3 (good to moderate) which is divided into Subgrades 3a (good) and 3b (moderate); Grade 4 (poor); and Grade 5 (very poor).
- 1.1.10 **Best and most versatile** (BMV) agricultural land is defined as land of excellent to good agricultural quality (ALC Grades 1, 2 and Subgrade 3a) and is afforded a degree of protection in the National Planning Policy Framework (NPPF), 2021².
- 1.1.11 Soil series are the lowest category in the soil classification system and are precisely defined based upon particle-size distribution, parent material (substrate) type, colour, and mineralogical characteristics. Soil Associations are groupings of related soil series.

¹ MAFF, October 1988, Agricultural Land Classification of England and Wales: Revised criteria for grading the quality of agricultural land (ALC011)

² Ministry of Housing, Communities and Local Government, 2021, National Planning Policy Framework, https://www.gov.uk/government/publications/national-planning-policy-framework--2

1.2 Desk study

Information Sources

1.2.1 Information about the soils and agricultural land present on the Site was obtained from the published sources outlined in **Table 1.1**. This information assists in preparing the surveyor on likely site conditions prior to commencement of the survey.

Table 1.1 - Data sources used to inform the agriculture and soils assessment

Organisation	Data Source	Data Provided
The Soil Survey of England and Wales	Soils and their Use in Northern England and accompanying 1:250,000 map Sheet 13.	Mapped soil associations and details of soil characteristics.
MAFF (now Defra)	Provisional ALC 1:250,000 mapping Yorkshire and The Humber (ALC003) 4.	Mapped ALC distributions - agricultural land quality data.
Natural England	Likelihood of Best and Most Versatile (BMV) Agricultural Land - Strategic scale map Yorkshire and The Humber (ALC015) ⁵ .	1:250,000 scale mapping predicting the likelihood of BMV agricultural land.
Google	Google Maps incorporating Streetview ⁶ and Google Earth Pro ⁷ .	Aerial and street level imaging of the Project.
Department of the Environment, Farming and Rural Affairs (Defra)	The Government's geographic information website: Multi-Agency Geographical Information for the Countryside MAGIC.gov.uk 8.	Administrative area boundaries, Provisional and Post-1988 ALC data, and aerial imaging available to view digitally and overlay.
Cranfield University (Knox et al.)	Report: Research to develop the evidence base on soil	Soil erosion criteria to inform soil sensitivity classifications.

³ Soil Survey of England and Wales (1984). Soils and their Use in Northern England and accompanying 1:250,000 map Sheet 1. National Soil Resources Institute; Cranfield.

⁴ MAFF (1993). 1:250,000 Provisional Agricultural Land Classification Sheet, Yorkshire and the Humber (ALC003) (online). Available at: https://data.gov.uk/dataset/952421ec-da63-4569-817d-4d6399df40a1/provisional-agricultural-land-classification-alc (Accessed 30 June 2021).

⁵ Natural England (2017) Likelihood of Best and Most Versatile (BMV) Agricultural Land - Strategic scale map Strategic scale map Yorkshire and The Humber (ALC015) (online).

⁶ Google (2021). Google Maps incorporating Google Streetview. (online) (Accessed 30 June 2021).

⁷ Google (2022). Google Earth Pro. (online). (Accessed April 2022).

⁸ Defra (2021). Multi-Agency Geographical Information for the Countryside (MAGIC) (online). Available at https://magic.defra.gov.uk/magicmap.aspx (Accessed 30 June 2021).

Organisation	Data Source	Data Provided
	erosion and water use in agriculture ⁹ .	
Cranfield University	Climatological Data for Agricultural Land Classification ¹⁰	Agroclimatic data to inform ALC.

Soils

- 1.2.2 The scale of the Soil Survey of England and Wales (1984) mapping is such that it is not accurate to the field level and does not pick up small-scale local variations in soil type. It does however provide a general indication of the soil types within the Site and the wider Borough. The Site lies in an area of Foggathorpe 2 (712i) association.
- 1.2.3 A summary of the characteristics of this soil association is provided in Table 1.2.

Table 1.2 - Summary of soil types and soil erodibility risk for the soil within the study area

Soil Association	Description	Erodability
Foggathorpe 2 (712i)	Slowly permeable seasonally waterlogged stoneless clayey and fine loamy over clayey soils. Some similar coarse loamy over clayey soils. Soils are slowly permeable and can be seasonally waterlogged (Wetness Class III and IV) even with drainage	Very Small Risk (Water).

Agricultural land classification

- 1.2.4 The Provisional 1:250,000 ALC mapping indicates that agricultural land within the Site is ALC Grade 3 (good to moderate). However, as with the soils data, the scale of the mapping is not accurate at the field level as it does not pick up variations in ALC grade for areas less than approximately 80 ha. However, it does provide an indication of the predominant ALC grading in the wider area.
- 1.2.5 The BMV Likelihood mapping indicates that agricultural land within the Site is of moderate likelihood of BMV land (20 60 % area of BMV).

⁹Cranfield University, Knox *et al.* (2015). 'Research to develop the evidence base on soil erosion and water use in agriculture: Final Technical Report. pp147'. (online) (Accessed 30 June 2021).

¹⁰Cranfield University (2013). Climatological Data for Agricultural Land Classification (online). Available at: https://data.gov.uk/dataset/8a334958-ff65-4f5c-9674-5a85e61ee269/climatological-data-for-agricultural-land-classification (Accessed 30 June 2021).

Aerial imagery

1.2.6 Satellite imagery of the Site, shown in Plate 2, which shows some signs of soil variability in the central and southern field, and no obvious changes in the northern field.

Plate 2 Satellite imagery of the Site (© Google Earth)

1.3 Site Survey

Methodology

- 1.3.1 A soil survey was undertaken from the 9 10 May 2022 by experienced soil surveyors using augered soil cores and soil profile pits. A detailed soil survey was undertaken with 1 point per ha.
- 1.3.2 Auger cores were taken using a 70 mm diameter hand-held Edelman auger, capable of sampling to a maximum depth of 120 cm; the soil profile pit was excavated, using a spade to a maximum depth of 75 cm, sufficient to evaluate the *in-situ* structure of the soil profile.
- 1.3.3 A total of 46 points, 41 cores and 5 pits were inspected. As shown on **Figure 11.5**, **Volume 5**, **Document 5.4.11**, the survey points were distributed across the Site, giving a survey density of one point per hectare in the areas of agricultural land for detailed ALC survey, and a less densely distributed to verify the existing ALC survey. This includes all of the conditions present on Site, above the recommendations set out in standard survey and ALC guidance and methodology. The purpose of the survey was to provide details of soil profile characteristics and to inform the ALC assessment.
- 1.3.4 To confirm the soil texture across the Site, ten soil samples were sent for analysis of particle size distribution by NRM Laboratories, accredited by UKAS to the internationally recognised standard for competence; ISO/IEC 17025.

Site description

- 1.3.5 The south-eastern field was sown in with a bean crop, the north-western field was grassland.
- 1.3.6 A large hedgerow separates both fields from the road traversing between them, with smaller hedgerows between separate parcels of the southern field.

Soils

1.3.7 Two soil series, both from the Foggathorpe 2 (712i) association, were identified during the site survey. The Portington Series and the Foggathorpe Series, a description and image of each is provided below.

Portington Series

- 1.3.8 Horizon 1, topsoil, depth averaged 32 cm, with a sandy loam to clay texture, dark brown colour (10YR 5/1), with sparse mottling if any (10YR 6/6) and a granular to angular blocky structure. The soil was weakly to moderately developed with fine to coarse ped sizes and a firm to very firm consistency. There were no stones observed.
- 1.3.9 Horizon 2, upper subsoil, depth averaged 61 cm, with a silty clay loam to clay texture, pale colour (10YR 6/1) with many ochreous mottles (100%, 10YR 6/8). Biopores were observed in this horizon, the structure was subangular blocky to prismatic with moderate development and a medium to coarse ped sizes, the consistence was very friable. Some profiles showed a thin grey band before the main subsoil, which was of the same colour but with very few mottles. There were no stones observed.
- 1.3.10 Horizon 3, lower subsoil, depth ranged 70 to 120 cm (the maximum observed for ALC surveys), with a silty clay to clay texture, dark grey in colour (5Y 4/1), moderate ochreous mottling (40%, 10YR 5/8). No biopores were observed, the structure was prismatic, of moderate development, with a very coarse ped size and extremely firm consistence. Where sand occurred in the horizon a typical granular structure and friable consistence was observed. In none of the profiles were stones observed.
- 1.3.11 The soils in this series are predominantly of Wetness Class 2, with gleying occurring within 70cm, and a slowly permeable layer occurring within 80 cm.
- 1.3.12 Example plates of this soil series are shown below.

Plate 3 - Point 66 - Portington Series - Wetness Class 4

Plate 4 - Point 75 - Portington Series - Wetness Class 3

Plate 5 - Point 88 - Portington Series - Wetness Class 2

Plate 6 - Point 84 - Portington Series - Wetness Class 1

Foggathorpe Series

- 1.3.13 Horizon 1, topsoil, depth averaged 37 cm, with a sandy loam to clay loam texture, dark brown colour (10YR 3/2), with no mottling and a granular to subangular blocky structure. The soil was weakly to moderately developed with fine to coarse ped sizes and a friable to extremely friable consistency. There were no stones observed.
- 1.3.14 Horizon 2, upper subsoil, depth averaged 70 cm, with a heavy clay loam to silty loam texture, dark to pale colour (10YR 6/1), with darker colours occurring in textures with larger sand fraction. All had moderate to many ochreous mottles (100%, 10YR 5/8). Biopores were generally not observed in this horizon, the structure was subangular blocky to prismatic with weak to moderate development and a medium (where sandy) to very coarse (where clay) ped size, the consistence was extremely firm. There were no stones observed.
- 1.3.15 Horizon 3, lower subsoil, depth ranged 70 to 120 cm (the maximum observed for ALC surveys), with a silty clay loam to clay texture, dark grey in colour (10YR 5/4), slight to moderate ochreous mottling (40-100%, 10YR 5/8). No biopores were observed, the structure was prismatic, except where sand dominated structure was singular grains, but all of moderate development, with a coarse to very coarse ped size and friable to extremely friable consistence. There were no stones observed.
- 1.3.16 The soils in this series are predominantly of Wetness Class 1, with gleying occurring within 80cm, and a slowly permeable layer occurring within 80 cm. Two observed points were of Wetness Class 3 (64 and 65), and four observed points were of Wetness Class 2 (98, 100, 105 and 106).
- 1.3.17 Example photographs of this soil series are shown below.

Plate 7 - Point 65 - Foggathorpe Series - Wetness Class 3

Plate 8 - Point 100 - Foggathorpe Series - Wetness Class 2

Plate 9 - Point 100 - Foggathorpe Series - Wetness Class 1

Agroclimatic data

- 1.3.18 Agroclimatic data was taken from the nearest meteorological stations and interpolated to obtain site-specific values, see **Table 1.3**. This was then used to establish whether the agricultural land quality of the Site is limited by climate and, in conjunction with soil profile characteristics, wetness and droughtiness.
- 1.3.19 It was found that the climate did not poses a limitation to the ALC on Site.

Table 1.3 – Interpolated agroclimatic data for the Site

Measure (units)	Value	
Average annual rainfall (mm)	633	
Accumulated Temperature (0C)	1381	
Field Capacity Duration (FCD) (days)	142	
Moisture Deficit Wheat (mm)	104.7	
Moisture Deficit Potatoes (mm)	95.5	

Direct limitations

- 1.3.20 This section summarises the limitations present at the Site (for detailed assessment of each Survey Point refer to **Annex 11B.1**).
- 1.3.21 There is no further limitation to land quality due to topsoil texture, soil stone content, soil depth, gradient, or flood risk (summer and winter).

Interactive limitations

- 1.3.22 The combination of 142 Field Capacity Days, varying soil textures, structure and consistence, with the Wetness Classes 1 and 2 there are interactive limitations at the Site.
- 1.3.23 Wetness poses a limitation to the agricultural land of the Site for some points where heavier and more firm subsoils were encountered which impedes soil drainage. This is found in areas with pale coloured subsoils and ochreous mottling, resulting in limitation to Grade 2, Subgrade 3a and Subgrade 3b across the Site.
- 1.3.24 Droughtiness poses a limitation to the agricultural land quality for some points where the upper subsoil has a higher clay content, these soils will suffer from droughtiness in this lower rainfall area due to lower levels of available water. Calculations indicate that the droughtiness will be slight for potatoes and in some areas also wheat. The resulting in limitation to Grade 2 and Subgrade 3a at some points within the Site.

1.4 Overall agricultural land classification

- 1.4.1 Grade boundaries were drawn based on field observations and the calculations from the individual points to make mapping units representative of field conditions. The boundaries of the previous ALC survey were amended slightly to take into account the new surrounding ALC information. The ALC map comprises Grade 1, Grade 2, Subgrade 3a and Subgrade 3b Agricultural Land, with some small areas of non-agricultural land.
- 1.4.2 A description of each grade is provided below, a summary of the ALC gradings for the site is shown in **Table 1.4**, and in geographically in **Figure 11.5**, **Volume 5**, **Document 5.4.11**.

Grade 1

1.4.3 Areas of land with no restrictions to agricultural production.

Grade 2

1.4.4 Areas of land showing only slight limitations to agricultural production due to droughtiness and/or wetness.

Subgrade 3a

1.4.5 Areas of land with limitations to agricultural production due to subsoil wetness, where a slowly permeable layer occurs within 70cm, and gleying within 80cm depth.

Subgrade 3b

1.4.6 Areas of land with moderate limitations to agricultural production due to subsoil wetness, where gleying is present within 40cm depth.

Non-agricultural

1.4.7 Land not used for agricultural production. A portion of the agricultural land within the survey boundary had been planted with tree saplings to the south east, and a road separates the two fields.

Table 1.4 – Summary of Agricultural Land Classification at the Site

ALC or other land category	Area (ha)	Percentage (%)
Grade 1 (excellent)	4.5	8.9
Grade 2 (very good)	9.4	18.8
Subgrade 3a (good)	23.8	47.8
Subgrade 3b (moderate)	10.3	20.6
Grade 4 (poor)	0.0	0.0
Grade 5 (very poor)	0.0	0.0
Non-agricultural	1.9	3.9
Total	49.9	100

1.5 Summary and Conclusions

The agricultural land within the survey boundary is made up of Grade 1 (excellent quality, 4.5 ha, 8.9%), Grade 2 (very good quality, 9.4 ha, 18.8 %), Subgrade 3a (good quality, 23.8, 47.8%) and Subgrade 3b (moderate quality, 10.3 ha, 20.6 %) agricultural land. The main differentiation between gradings at the Site was the depths to the slowly permeable and gleyed soil horizons. A small area of non-agricultural land (1.9 ha, 3.9 %) is present where the public highway transects the site, and where new tree planting has been done in the south eastern corner of the site.

The proposed location of the substation for the Project would be located on an area of Subgrade 3b, with smaller areas of Subgrade 3a and Grade 2 agricultural land.

The soils in the survey boundary range from light textured where sandy loams are present to heavy clays of the Foggathorpe 2 (712i) soil association, specifically the Foggathorpe and Portington series.

Annex 11B.1 Soil Survey Record and ALC Breakdown

Survey point number corresponds with the numbers on **Figure 11.5**, **Volume 5**, **Document 5.4.11**, and in the other Annexes.

Page intentionally blank

Soil Survey Record and ALC Calculations

Legend for non-self-explanatory terms:

Horizons - number of different horizons identified within the profile

Type - type of sample, auger core or soil profile pit dug using a spade

Depth - depth to the bottom of the (horizon number) horizon in cm

Texture - C - clay, ZC - silty clay, SC - sandy clay, CL - clay loam, SCL - sandy clay loam, ZCL - silty clay loam, SL - sandy loam, LS - loamy sand, S - sand; CL and ZCL textures are subdivided into medium (M) and heavy (H) classes according to clay content, as follows: M medium (less than 27 % clay), H heavy (27-35 % clay); F, M and C refer to fine, medium and coarse, respectively, and are subdivisions of S, LS, SL, and SZL textures; O - organic, P - peat or peaty, HP - humified (highly decomposed peat), FP - fibrous peat, SFP - semi-fibrous peat; MZ - marine light silts

Matrix (main) colour - dominant colour of the soil; Hue - Munsell colour hue; Value - Munsell colour value; Chroma - Munsell colour chroma

Mottling - spots and blotches of different colour than the dominant matrix colour

Ped faces - surfaces of the primary soil fragments into which the soil naturally breaks up upon excavating

FeMn - ferri-manganifeours concertions

Biopores - 'yes' if >0.5 % biopores greater than 0.5 mm diameter present (by area)

Stones > 2 cm up to % - maximum percentage of 2 - 6 cm diameter stones

Stones > 6 cm up to % - maximum percentage of > 6 cm diameter stones

Type - H - All hard rocks or stones (those which cannot be scratched with a finger nail); SS - Soft, medium or coarse grained sandstones; SIM - Soft 'weathered' igneous or metamorphic rocks or stones; SL - Soft oolitic or dolomitic limestones; SFS - Soft fine-grained sandstones; SAZ - Soft, argillaceous or silty rocks or stones; CH - Chalk or chalk stones; GRH - Gravel¹ with non-porous (hard) stones; GRS - Gravel¹ with porous stones (mainly soft stone types listed);1 - Gravel with at least 70% rounded stones by volume

Structure type - SG - single grain; GR - granular; SAB - subangular blocky; AB - angular blocky; PR - prismatic; PL - platy; MAS - massive

Dev - Development, how well the structure is developed; W - weak; M - moderate; S - strong

Consistence - Soil consistence (strength); L - loose; VFR - very friable; FR - friable; FIR - firm; VFIR - very firm; EXFIR - extremely firm; EXHD - extremely hard

Gley - depth to gleying

SPL - depth to slowly permeable layer

Wetness Class - classification of the soil according to the depth and duration of waterlogging in the soil profile, the higher the class, the longer and at the shallower depth the soil is wet

Overall ALC - this part of the table combines results of the classification for each of the limitations

	i lyne i lhed o'r i Horizon i Denth Lleyture i i lynn i lynne i laningan-i li li li lin to li 27 cm i 26 cm i																										
	1						Matri	x (main)	colour		Peat	-specific pr	operties			Mott	ling		 	•					Sto	nes and r	ocks
Survey point	Туре	Grad- ient		Horizon	·		Hue	Value	Chroma	Von Post	Water content (B)	Fine fibre content (F)	Coarse fibre content (R)	remains (W)	Abundan- ce up to %	Hue	Value	Chroma	different to matrix	Hue	Value	Chroma	up to %	res	up to %		
64	Core	0	no	1 2 3 4 5	42 73 120		10YR 10YR 5Y	3 5 4	3 2 5 2 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a		100	0 10YR 10YR		8 8	no no no	n/a n/a n/a		n/a n/a n/a	2	yes no no	0	0 0 0	n/a n/a n/a n/a
65	Core	0	no	1 2 3 4 5	46		10YR 10YR 10YR	3 6 4	3 2 5 1 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	40	0 10YR 10YR	0 7 5	0 8 6	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes no no	0	0 0 0	n/a n/a n/a
66	Core	0	no	1 2 3 4	70	HZCL	10YR 10YR 5Y	3 6 4	3 2 5 1 1 1	n/a n/a n/a		n/a n/a n/a	n/a n/a n/a		40	0 10YR 10YR	0 5 5	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes no no		1	n/a n/a n/a
67	Pit	0	no	1 2 3 4	30 45 55 85	С	10YR N N	3 5 5 4	3 2 5 0 5 0 4 0	n/a n/a n/a n/a	n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	40 2	0 7.5YR 10YR 10YR	0 4 6 4	0 6 6 4	no no no yes	n/a n/a n/a 7.5YR	n/a n/a n/a 6		20		0 0		n/a n/a n/a n/a
68	Core	0	no	1 2 3 4	35 55 115	ZC	10YR 10YR 5PB	3 5 4	3 2 5 1 4 0	n/a n/a n/a		n/a n/a n/a	n/a n/a n/a	n/a	20	7.5YR 7.5YR 10YR	6 6 3	8 6 4	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes no no		0 0 0	n/a n/a n/a
69	Core	0	no	1 2 3 4 5	25 55 75 120	C LS	10YR 2.5Y 10YR N	5 5 6 2.5	5 1 5 1 5 0	n/a n/a n/a n/a	n/a n/a	n/a	n/a n/a n/a n/a	n/a n/a	40 40	7.5YR 7.5YR 7.5YR 7.5YR	0 6 6 4	0 8 8 4	no yes no no	n/a 7.5YR n/a n/a	n/a 7 n/a n/a		20 0	no	0 0	0	n/a n/a n/a n/a n/a
70	Core	0	no	1 2 3 4 5	41 75 120		10YR 10YR 5Y	3 5 4	3 2 5 2 1	n/a n/a n/a	n/a		n/a n/a n/a	n/a	100	10YR	0 5 5	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes 0 no	0	0 0 0	n/a n/a n/a
71	Core	0	no	1 2 3 4	66 120	MZCL	10YR 10YR 5Y	3 6 4	3 2 5 1 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	100		0 7 5	0 8 6	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	no	0	0 0 0	n/a n/a n/a

									ALC for area	s represent	ted by indivi	dual survey	points								
Survey point	Туре	ment	Ped size	Consis- tence	Calca- reous	Gley- ing	SPL	Notes	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
64	SAB PR PR	М	M VC C	FIR EXFIR EXHD	no	NO	NO YES YES	-	3	0	1	1	1	1	1	1	3a	2	1	3a	Wetness
65	SAB PR PR	М	С	EXFIR EXFIR EXFIR	no	NO	NO NO YES	-	3	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
66	SAB PR PR	М	VC	VFIR VFIR EXFIR	no	YES	NO YES YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
67	SAB PR GR PR	S W	M C F C	FIR EXFIR FR EXFIR	no no	YES NO	NO YES NO YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
68	SAB PR PR	М		FIR FIR EXFIR	no	YES	NO YES YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
69	SAB SAB GR PR	М		FIR FIR FR EXFIR	no no	YES YES	NO NO NO YES	-	2	0	1	1	1	1	1	1	3a	2	1	3 a	Wetness
70	SAB PR PR	М	С	FIR FIR EXFIR	no	YES	NO NO YES	Small sand pocket in H2.	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
71	SAB PR PR	М	С	FIR EXFIR EXFIR	no	NO	NO NO YES	-	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness

	Soil prof	file descri	ptions																Soil profile o	lescriptio	ns contin	ued					
			Soil				Matri	x (main)	colour		Peat	-specific pı	roperties			Mott	ling			Ped fa		_			Sto	nes and r	ocks
Survey point	Туре	Grad- ient	distur- bed or resto- red	Horizon	·	Texture	Hue	Value	Chroma	Von Post	content (B)	Fine fibre content (F)	fibre content (R)	Wood remains (W)	Abundan- ce up to %	Hue			Colour different to matrix	Hue		Chroma	FeMn up to %		> 2 cm up to %	> 6 cm up to %	
72	Core	0	no	2 3 4 5	31 65 120	MZCL MZCL	10YR 10YR 10YR	3 4 5	4 2	n/a n/a n/a	n/a n/a n/a	n/a n/a	n/a n/a	n/a n/a n/a	100	0 10YR 10YR	0 5 5	8	no yes yes	n/a 10YR 5Y	5 4	1	0	yes no no	0	0	n/a n/a n/a
73	Core	0	no	1 2 3 4 5	30 68 120	MZCL	10YR 10YR 5Y	3 5 4	1	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a	n/a n/a n/a	0 40 40	0 10YR 10YR	0 5 5	8 8 8	no no no	n/a n/a n/a		n/a	0 0 0	yes yes no	0 0 0	0 0	n/a n/a n/a
74	Core	0	no	1 2 3 4 5	28 47 115	ZC	10YR N N	3 6 4	2 0 0	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a n/a n/a	40	0 7.5YR 7.5YR		Ĭ	no yes no	n/a 7.5YR n/a	5	8	0 20 20	yes no no	0 0 0	0 0 0	n/a n/a n/a
75	Core	0	no	1 2 3 4	28 55 120	ZC	10YR 7.5YR N	3 6 4	1 0	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a n/a n/a	40	0 7.5YR 10YR	0 5 4	0 6 4	no no no	n/a n/a n/a		n/a	0 0 2	yes no no	0 0 0	0 0 0	n/a n/a n/a
76	Core	0	no	1 2 3 4	32 84 120	HCL	10YR 10YR 5Y	3 6 4	2 1 1	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a n/a n/a	100	0 10YR 10YR	0 6 5	Ĭ	no no no	n/a n/a n/a		n/a	0 0 0	yes no no	0 0 0	0 0 0	n/a n/a n/a
77	Pit	0	no	1 2 3 4	35 55 80	SL	10YR N 7.5YR	3 7 7	2 0 1	n/a n/a n/a	n/a n/a n/a	n/a	n/a		40	10YR 7.5YR 7.5YR		6	no no no	n/a n/a n/a	n/a n/a n/a	n/a	2 40 20	yes no no	0 0 0	0 0 0	n/a n/a n/a
78	Core	0	no	1 2 3 4	33 58 120	SL	10YR 10YR 5Y	3 6 4	2 1 1	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a n/a n/a	100	10YR 10YR 10YR		8 8 8	no no no	n/a n/a n/a	n/a	n/a	0 0 0	yes yes no	0 0 0	0 0 0	n/a n/a n/a
79	Core	0	no	1 2 3 4	33 63 120	HCL	10YR 10YR 5Y	3 6 4	2 1 1	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a	100	0 10YR 10YR	7	8	no no no	n/a	n/a n/a n/a	n/a	0 0 0	yes no no	0 0 0	0 0 0	n/a n/a n/a
80	Core	0	no	1 2 3 4	24 59 120	С	10YR 10YR 5Y	3 5 4	2 2 1	n/a n/a n/a	n/a n/a n/a		n/a	n/a n/a n/a	0 100 100	0 10YR 10YR	7	8	no no no		n/a n/a n/a	n/a	0 0 0	yes no no	0 0 0	0 0 0	n/a n/a n/a
81	Core	0	no	1 2 3 4 5	33 58 80 115	SCL LMS	10YR 2.5Y 7.5YR 5PB	3 6 6 4	2 1 6 0	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	n/a n/a	n/a n/a	40 0	0 7.5YR 0 10YR	0	0 8 0 4	no no no no	n/a n/a n/a n/a	n/a n/a	n/a	0 0 0 0	yes no no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
82	Core	0	no	1 2 3 4 5	30 80 120	MCL	10YR 10YR 5Y	3 5 4	2 1 1	n/a n/a n/a	n/a n/a n/a	n/a	n/a	n/a	40	0 10YR 10YR	5	0 8 8	no no no	n/a	n/a n/a n/a	n/a	0 0 0	yes no 0	0 0 0	0 0 0	n/a n/a n/a

									ALC for are	as represen	ted by indiv	idual survey	points					•			
Survey point	Туре	Deve- lop- ment	Ped size		reous	Gley- ing	SPL	Notes	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
72	SAB PR PR	М	С	EXFIR	no	YES	NO YES YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
73	SAB PR PR	М	С	VFIR	no	YES	NO NO YES	-	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
74	SAB PR PR		М		no	YES	NO YES YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
75	SAB SAB PR	М	F	FIR FIR EXFIR	no	YES	NO NO YES	-	3	0	1	1	1	1	1	1	3a	1	1	3a	Wetness
76	SAB PR PR	М	VC	EXFIR	no	YES	NO YES NO	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
77	SAB AB GR		М		no	YES	NO NO NO	-	2	0	1	1	1	1	1	1	3b	1	1	3b	Wetness
78	SAB PR PR	М	М		no	YES	NO NO YES	-	3	0	1	1	1	1	1	1	3a	2	1	3a	Wetness
79	SAB PR PR	М	C	VFIR	no	NO	NO NO NO	-	1	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
80	SAB PR PR	М	C VC VC	VFIR	no	NO	NO NO NO	-	1	0	1	1	1	1	1	1	3a	2	1	3а	Wetness
81	SAB PR SG PR	M M	M VC	FIR L	no no	YES NO	NO YES NO NO	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
82	SAB PR PR	М	VC	EXFIR	no	YES	NO YES NO	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness

	Soil profile descriptions Soil Soil Matrix (main) colour Peat-specific properties Mottling Ped faces Stones and rocks distur- Coarse FeMn																		Soil profile d	escriptio	ns contin	ued					
							Matri	x (main)	colour		Peat	-specific pr	operties			Mott	ling								Sto	nes and r	ocks
Survey point	Туре	Grad- ient	distur- bed or resto- red	Horizon	Depth		Hue	Value	Chroma	Von Post	Water content (B)	Fine fibre content (F)	Coarse fibre content (R)	Wood remains (W)	Abundan- ce up to %	Hue	Value	Chroma	Colour different to matrix	Hue		Chroma	%		> 2 cm up to %	> 6 cm up to %	Туре
83	Core	0	no	1 2 3 4 5	33 54 8 87 120	HCL SCL	10YR 10YR 10YR 10YR	3 5 5 5	3 8 2 4	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a		40 40	10YR 10YR 10YR 10YR	5 5 5 5	8 8 8 8	no no no yes	n/a n/a n/a 10YR	n/a n/a n/a 5	n/a n/a n/a 1	0	yes yes no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
84	Core	0	no	1 2 3 4 5	34 70 95 115	C LFS	10YR 7.5YR 7.5YR 7.5YR	3 6 6 3	2 8 1 3	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	100 20	7.5YR 7.5YR 7.5YR 7.5YR	0 6 6 5	0 3 8 1	no no no no	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	0	yes no no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
85	Core	0	no	1 2 3 4 5	75	MZCL MSL	10YR 10YR 10YR 5Y	3 5 4 4	2 2 4 1	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	100 40	0 10YR 10YR 10YR	0 5 7 7	0 8 8 8	no no no no	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	0	yes yes no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
86	Core	0	no	1 2 3 4 5	35 45 65 115	HCL C	10YR 5YR N 5PB	4 7 7 4	2 1 0 0	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	40 40	0 7.5YR 10YR 10YR	0 6 6 3	0 8 8 4	no yes no no	n/a 7.5YR n/a n/a	n/a 5 n/a n/a	n/a 1 n/a n/a	0 0	yes no no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
87	Pit	0	no	1 2 3 4	. 25 45 120	MZCL HZCL HZCL	10YR 10YR 5Y	3 5 4	2 1 1	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a	40	0 10YR 10YR	0 5 5	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes no no	0 0 0	0 0 0	n/a n/a n/a
88	Core	0	no	1 2 3 4 5	45 70 90 120	HCL C	10YR N 5PB 7.5YR	3 6 4 6	2 0 0 2	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a	40 40	7.5YR 10YR 7.5YR 7.5YR	6 6 4 4	6 6 4 6	no no no no	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	2 0	yes no no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
89	Core	0	no	1 2 3 4 5	33 43 72 120	MCL LMS	10YR 10YR 10YR 5Y	3 5 6 4	2 1 1 1	n/a n/a n/a n/a	n/a n/a n/a n/a		n/a n/a n/a n/a	n/a n/a	100 100	10YR 10YR	6	0 8 8 4	no no no no	n/a n/a n/a n/a	n/a n/a	n/a n/a n/a n/a	0	yes yes no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
90	Core	0	no	1 2 3 4	40	HCL	10YR 10YR 5Y	3 5 4	2 2 1	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a	100	0 10YR 10YR	0 7 4	0 8 4	no no no	n/a n/a n/a			0	yes no no	0 0 0	0	n/a n/a n/a
91	Core	0	no	1 2 3 4	32 63 120	LMS	10YR 10YR 5Y	3 5 4	2 1 1	n/a n/a n/a	n/a	n/a	n/a n/a n/a	n/a	100	10YR	0 6 4	0 8 4	no no no	n/a n/a n/a	n/a	n/a	0	-	0 0 0	0 0 0	n/a n/a n/a

									ALC for area	as represent	ted by indivi	idual survey	points								
Survey point	Туре	ment	Ped size	Consis- tence	reous	Gley- ing	SPL	Notes	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
83	SAB PR SAB PR	M M	VC C	FIR VFIR FR EXFIR	no no	NO YES	NO NO NO	-	1	0	1	1	1	1	1	1	1	1	1	1	None
84	SAB PR SG SAB	M M	M M	FIR VFIR FR VFIR	no no	NO YES	NO NO NO NO	-	1	0	1	1	1	1	1	1	1	1	1	1	None
85	AB PR PR PR	M M	VC M	EXFIR VFIR VFR EXFIR	no	YES NO	NO NO NO NO	-	2	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
86	SAB SAB PR PR	M M	M M	FIR FIR VFIR EXFIR	no no	YES YES	NO NO YES YES	-	3	0	1	1	1	1	1	1	За	1	1	3a	Wetness
87	SAB PR PR	M	C C VC	FIR FIR EXFIR	no	YES	NO YES YES	-	4	0	1	1	1	1	1	1	3b	2	1	3b	Wetness
88	SAB SAB PR GR	M S		FIR VFIR EXFIR FR	no no	YES NO	NO NO YES NO	-	2	0	1	1	1	1	1	1	2	1	1	2	Wetness
89	SAB PR PR PR	M M	M M	FIR VFIR FR EXFIR	no no	YES YES	NO NO NO YES	-	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
90	SAB PR PR	М	VC	EXFIR VFIR EXFIR	no	NO	NO NO NO	-	1	0	1	1	1	1	1	1	1	2	1	2	Droughti- ness
91	SAB PR PR	М	С	FIR FR EXFIR	no	YES	NO	-	3	0	1	1	1	1	1	1	За	2	1	3a	Wetness

	Soil prof	ile descri	ptions																Soil profile d	escriptio	ns contin	ued					
	•		Soil				Matri	x (main)	colour		Peat	-specific pr	operties			Mott	ling			Ped fa		•			Sto	nes and r	ocks
Survey point	Туре	Grad- ient	distur- bed or resto- red	Horizon	Depth		Hue	Value	Chroma	Von Post	Water content (B)	Fine fibre content (F)	Coarse fibre content (R)	Wood remains (W)	Abundan- ce up to %	Hue	Value	Chroma	Colour different to matrix	Hue	Value		%	Biopo- res	> 2 cm up to %	> 6 cm up to %	Туре
92	Core	0	no	1 2 3 4 5	40 58 70 110	FSZL ZC	10YR 7.5YR N N	4 6 5 4	1 3 0 0	n/a n/a n/a n/a	n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a	2 20 40 40	7.5YR 10YR 10YR 10YR	6 6 6 5	6 6 4 4	no no no no	n/a n/a n/a n/a	n/a n/a n/a n/a	n/a	0	yes no no no	0 0 0 0	0 0 0 0	n/a n/a n/a n/a
93	Core	0	no	1 2 3 4 5	30 70 120	HZCL	10YR 10YR 5Y	3 6 4	2 2 1	n/a n/a n/a		n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0 40 40	0 10YR 10YR	0 5 6	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes yes no	0 0 0	0 0 0	n/a n/a n/a
94	Core	0	no	1 2 3 4	32 80 110	С	10YR 7.5YR 5YR	3 7 4	2 6 2	n/a n/a n/a		n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0 100 100	0 7.5YR N	0 5 5	0 1 0	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes no no	0 0 0	_	n/a n/a n/a
95	Core	0	no	1 2 3 4	32 45 90	SL	10YR 10YR 7.5YR	3 4 5	2 4 4	n/a n/a n/a	· .	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0 40 40	0 10YR 10YR	0 5 5	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	0	yes yes no	0 0 0	0 0 0	n/a n/a n/a
96	Core	0	no	1 2 3 4	45 50 105	HCL	10YR 10YR N	3 5 4	2 3 0	n/a n/a n/a		n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	2 40 40	10YR 7.5YR 10YR	6 6 4	6 6 4	no no no	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	2	yes no no	0 0 0	0 0 0	n/a n/a n/a
97	Pit	0	no	1 2 3 4	27 60		10YR 10YR	4 5	2 8	n/a n/a		n/a n/a	n/a n/a		0 40	0 10YR	0 5	0 2	no no	n/a n/a	n/a n/a	n/a n/a		yes no	0	0	n/a n/a
98	Core	0	no	1 2 3 4	35 52 75 120	LFS LS	10YR 7.5YR 7.5YR 7.5YR	6	2 6 4 1	n/a n/a n/a n/a	n/a n/a	n/a	n/a n/a n/a n/a	n/a	0	0 0 0 10YR	0	0 0 0 6	no no no no	n/a n/a n/a n/a	n/a	n/a n/a n/a n/a	0	yes yes no no	0 0 0 0	0 0	n/a n/a n/a n/a
99	Core	0	no	1 2 3 4 5	33 45 70 120	MSL MSL	10YR 10YR 10YR 7.5YR	3 4 4 4	2 4 4 3	n/a n/a n/a n/a	n/a n/a	n/a n/a	n/a n/a n/a n/a	n/a n/a	20 40	0 10YR 10YR 10YR	0 5 5 5	0 8 8 8	no no no no	n/a n/a n/a n/a	n/a n/a	n/a n/a	0	yes	0 0 0 0	0 0	n/a n/a n/a n/a
100	Core	0	no	1 2 3 4 5	42 65 120	SCL	10YR 10YR 10YR	2 4 4	2 4 4	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a		100	0 10YR 10YR	0 5 5	0 8 8	no no yes	n/a n/a 10YR	n/a n/a 6	n/a n/a 1		yes 0 no	0	0 0 0	n/a n/a n/a
101	Core	0	no	1 2 3 4 5	35 75 105	С	10YR 10YR 7.5YR	4 7 4	2 6 4	n/a n/a n/a	n/a	n/a	n/a n/a n/a	n/a	40	0 10YR N		0 1 0	no no no	n/a n/a n/a	n/a	n/a	2		0 0 0	_	n/a n/a n/a

									ALC for area	as represent	ted by indivi	dual survey	points								
Survey point	Туре	ment	Ped size		reous	Gley- ing	SPL	Notes	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
92	GR SG PR PR	M M	C M	FR FR FIR EXFIR	no no	YES NO	NO NO YES YES	-	2	0	1	1	1	1	1	1	1	3b	1	3b	Droughti- ness
93	SAB PR PR	M		VFIR VFIR EXFIR	no	NO YES YES	NO NO YES	-	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
94	SAB AB AB	M		FR EXFIR EXFIR	no		NO NO NO	-	1	0	1	1	1	1	1	1	За	2	1	3а	Wetness
95	GR SAB PR	М	М		no	NO NO NO	NO NO NO	-	1	0	1	1	1	1	1	1	1	3b	1	3b	Droughti- ness
96	SAB SAB PR	М		FIR FIR VFIR	no	NO YES NO	NO NO YES	-	2	0	1	1	1	1	1	1	2	2	1	2	Wetness Droughti- ness
97	SAB PR		M C	FIR EXFIR		NO NO		-	3	0	1	1	1	1	1	1	3a	3a	1	3 a	Wetness Droughti- ness
98	GR GR SG PR	W M		FR FR FR EXFIR	no no	NO	NO NO NO YES	-	2	0	1	1	1	1	1	1	2	3b	1	3b	Droughti- ness
99	GR SAB PR PR	M M	C C	VFR VFR	no no		NO NO NO	-	1	0	1	1	1	2	1	1	2	3b	1	3b	Droughti- ness
100	SAB SAB PR	М	М		no	NO	NO NO YES	-	2	0	1	1	1	1	1	1	2	1	1	2	Wetness
101	SAB PL PL				no		NO YES YES	-	3	0	1	1	1	1	1	1	За	2	1	За	Wetness

	Soil prof	file descri	iptions																Soil profile d	escriptio	ns contin	ued					
	·		Soil				Matri	ix (main)	colour		Peat	-specific pr	operties			Mott	ling		•	Ped fa	ces				Sto	nes and r	ocks
Survey point	Type	Grad- ient	distur- bed or resto- red	Horizon	Depth	Texture	Hue	Value	Chroma	Von Post	Water content (B)	Fine fibre content (F)	Coarse fibre content (R)	Wood remains (W)	Abundan- ce up to %	Hue	Value	Chroma	Colour different to matrix	Hue	Value	Chroma	%	Biopo- res	> 2 cm up to %	> 6 cm up to %	Туре
102	Core	0	no	1 2 3 4 5	110		10YR 5PB	5	3 2 5 0	n/a n/a	1	n/a n/a	n/a n/a	-		10YR 10YR	5	6	no yes	n/a 10YR	n/a 7	n/a 6	0	yes no		0	n/a n/a
103	Core	0	no	1 2 3 4 5		MSL	10YR 10YR 5Y	3 5 4	3 2 5 4 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	100	0 10YR 10YR	5	0 8 4	no no no	n/a n/a n/a	n/a n/a n/a	n/a	0	yes yes no	0	0	,
104	Core	0	no	1 2 3 4	38 95 120	MSL	10YR 10YR 5Y	4	3 1 4 4 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	20	0 10YR 10YR	0 5 4	0 8 4	no no no	n/a n/a n/a	n/a n/a n/a	n/a	0	yes yes no	0	0 0 0	n/a n/a n/a
105	Core	0	no	1 2 3 4	51	HCL	10YR 10YR 5Y	3 5 4	3 2 5 1 1 1	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	100	0 10YR 10YR	0 7 5	0 8 8	no no no	n/a n/a n/a	n/a n/a n/a	n/a	0	yes no no	0	_	n/a n/a n/a
106	Core	0	no	1 2 3 4	55	MSL	10YR 10YR 10YR	3 3 5	3 1 3 1 4	n/a n/a n/a	n/a		n/a n/a n/a	n/a	20	0 10YR 10YR	0 5 5	0 8 8	no no no	n/a n/a n/a		n/a	0	,	0	ľ	n/a n/a n/a
107	Pit	0	no	1 2 3 4	29 85		10YR 7.5YR	5	3 6	n/a n/a		n/a n/a	n/a		0	0	0	0	no no	n/a n/a	n/a n/a			yes yes		0	n/a n/a
152	Core	0	no	1 2 3 4	38 75 115	С	10YR N N			n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	40			_	no yes yes	n/a 7.5YR 7.5YR		n/a 4 4	0 0	yes no no	0	_	n/a n/a n/a
153	Core	0	no	1 2 3 4	41 70 120	SCL	10YR 10YR 0	5	3 1 5 4 0 0	n/a n/a n/a	n/a	n/a n/a n/a	n/a n/a n/a	n/a	100	7.5YR	0 5 0	0 8 0	no no no	n/a n/a n/a	n/a	n/a	0	yes	_	0 0	n/a n/a n/a

									ALC for area	s represent	ed by indivi	dual survey	points					_	_	_	
Survey point	Туре	ment			reous	Gley- ing	SPL	Notes	Wetness class	Climate	Gradient	Summer flood risk	Winter flood risk	Topsoil texture	Soil Depth	Topsoil stoniness	Wetness	Droughti- ness	Other (see "Limited by" column)		Limited by
102	SAB PR		F M	FR VFIR			NO YES	-	3	0	1	1	1	1	1	1	3a	2	1	3 a	Wetness
103	GR PR PR	М		L VFR EXFIR		NO		-	1	0	1	1	1	1	1	1	1	1	1	1	None
104	GR PR PR	М	M M VC	VFR VFR EXFIR	no	NO		-	1	0	1	1	1	1	1	1	1	1	1	1	None
105	SAB PR PR	М	C C	FR VFIR EXHD	no	NO	NO NO YES	-	2	0	1	1	1	1	1	1	3a	2	1	3а	Wetness
106	GR PR PR	W	C M C	VFR VFR FR		NO	NO	-	2	0	1	1	1	1	1	1	1	1	1	1	None
107	GR SAB		F F	FR FR				-	1	0	1	1	1	1	1	1	1	1	1	1	None
152	SAB SAB SAB	М	M F F	FIR VFIR VFIR	no	YES		-	2	0	1	1	1	1	1	1	2	1	1	2	Wetness
153	GR PR 0		0 M 0	VFR FIR O		NO	NO	Hit rock at 70cm.	1	0	1	1	1	1	1	1	1	3b	1	3b	Droughti- ness

Annex 11B.2 Droughtiness Calculations

Survey point number corresponds with the numbers on **Figure 11.5**, **Document 5.4.11**, **Volume 5**, and in the other Annexes.

Page intentionally blank

Droughtiness Calculations

Abbreviations for non self-explanatory terms:

TAv – Total amount of soil water available to plants, considered to be the volumetric soil water content between 0.05 and 15 bar suction or, in case of sands and loamy sands, 0.10 and 15 bar suction. These suctions approximate to the conditions of field capacity and wilting point (when the plants can extract no more moisture from the soil).

EAv – Easily available water, held in the soil between 0.05 and 2.0 bar suction, used for calculating cereal available water below 50 cm depth where root systems are less well developed, and the plant's ability to extract water is diminished.

Values of TAv and EAv are estimated for each horizon based on soil texture and structural condition according to the ALC guidelines (MAFF, 1988).

AP – crop adjusted available water capacity, a measure of the quantity of water held in the soil profile which can be taken up by a specific crop.

MD – the moisture deficit term used in the ALC droughtiness assessment is a crop-related meteorological variable which represents the balance between rainfall and potential evapotranspiration calculated over a critical portion of the growing season.

MB – moisture balance: MB=AP-MD, MB for wheat and potatoes determines limitation by droughtiness

				Data	inputs															Droughtine	ss calculat	tions									
				1		Av. wat			er (stones)			1	1	I .	AP wh		1 1					1		TAv		potatoe		I			Limited
Survey Point	Horizon	Horizon thickness	Texture		Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	TAv/EAv stones	Stones %	AP w	heat	AP(wheat) -MD(wheat)	Start depth	End depti	n thick	n. top/su soil	stone %	stone	Stone %	AP pot	atoes	AP(potato) -MD(potato)	to ALC grade
	1	42	MCL	0	GOOD	18				TAv	0	42 42	42	18	100	0	0	756 0			0	42	42	18	100	0	0	756			
	2	31	HCL	0	POOR	12	7			TAv	42	73	8	12	100	0	0	96			42	73	28	12	100	0	0	336			
	3	47	HZCL	0	POOR	12	6			EAv TAv	42 73	73 120	23	7	100	0	0	161 0			73	120	0	12	100	0	0	0			
64										EAv	73	120	47	6	100	0	0	282	130	25	100								109	14	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120		0	100	0	0	0			
	5									TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	1	30	HCL	0	GOOD	18				TAv	0	30	30	18	100	0	0	540			0	30	30	18	100	0	0	540			
	2	16	MCL	0	POOR	12	7			EAv TAv	30	30 46	0 16	0 12	100	0	0	0 192			30	46	16	12	100	0	0	192			
	_						6			EAv	30	46	0	7	100	0	0	0													
65	3	74	MZCL	0	POOR	12	ь			TAv EAv	46 46	120 120	70	12 6	100	0	0	48 420	120	15	46	120	24	12	100	0	0	288	102	6	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	1	21	MZCL	0	GOOD	19				TAv	120	120 21	0 21	0 19	100	0	0	399			0	21	21	19	100	0	0	399			
	2	49	HZCL	0	POOR	12	6			EAv TAv	0 21	21 70	0 29	0	100	0	0	0			21	70	49		100	0	0	588			
							В			EAv	21	70	20	6	100	0	0	120								•	•				
66	3	50	HZCL	0	POOR	12	6			TAv	70 70	120 120	0 50	12 6	100	0	0	300	117	12	70	120	0	12	100	0	0	0	99	3	2
	4									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	5									EAv TAv	120 120	120 120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	1	30	MCL	0	GOOD	18				EAv TAv	120	120 30	0 30	0 18	100 100	0	0	0 540			0	30	30	18	100		0	540			
	1		IVICE	U						EAv	0	30	0	0	100	0	0	0			0										
	2	15	С	0	POOR	13	7			TAv EAv	30	45 45	15 0	13	100	0	0	195			30	45	15	13	100	0	0	195			
67	3	10	SC	0	GOOD	19	14			TAv	45	55	5	19	100	0	0	95	111	6	45	55	10	19	100	0	0	190	112	16	2
	4	30	С	0	POOR	13	7			EAv TAv	45 55	55 85	0	14 13	100 100	0	0	70 0			55	85	15	13	100	0	0	195			
	5									EAv TAv	55 85	85 85	30 0	7	100 100	0	0	210			85	85	0	1 0	100	0	0	0			
										EAv	85	85	0	0	100	0	0	0													
	1	35	MCL	0	GOOD	18				TAv	0	35 35	35 0	18	100 100	0	0	630			0	35	35	18	100	0	0	630			
	2	20	ZC	0	MODERATE	15	8			TAv EAv	35 35	55 55	15 5	15 8	100 100	0	0	225 40			35	55	20	15	100	0	0	300			
68	3	60	С	0	POOR	13	7			TAv	55	115	0	13	100	0	0	0	132	27	55	115	15	13	100	0	0	195	113	17	2
00	4									EAv TAv	55 115	115 115	60	7	100	0	0	420 0	132	2,	115	115	0	0	100	0	0	0	113		-
										EAv TAv	115	115	0	0	100	0	0	0					1 0	1 0	100	0	0	0			
	5									EAv	115 115	115 115	0	0	100 100	0	0	0			115	115	0			U	U				
	1	25	HCL	0	GOOD	18				TAv	0	25 25	25 0	18 0	100 100	0	0	450 0			0	25	25	18	100	0	0	450			
	2	30	С	0	GOOD	21	15			TAv	25	55	25	21	100	0	0	525			25	55	30	21	100	0	0	630			
69	3	20	LS	0	#N/A	#N/A	#N/A			EAv TAv	25 55	55 75	5 0	15 #N/A	100	0	0	75 #N/A	401/0	401/0	55	75	15	#N/A	100	0	0	#N/A	#NI / A	401/0	#N/A
69	4	45	ZC	0	POOR	12	7			EAv TAv	55 75	75 120	20	#N/A 12	100 100	0	0	#N/A 0	#N/A	#N/A	75	120			100	0	0	0	#N/A	#N/A	#IN/A
		45	ZL	U	PUUK	12	,			EAv	75	120	45	7	100	0	0	315					•								
	5									TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	1	41	MCL	0	GOOD	18				TAv	0	41	41	18	100	0	0	738			0	41	41	18	100	0	0	738			
	2	34	MCL	0	POOR	12	7			EAv TAv	0 41	41 75	9	12	100 100	0	0	108			41	75	29	12	100	0	0	348			
	3	45	HZCL	0	POOR	12	6			EAv TAv	41 75	75 120	25 0	7	100 100	0	0	175 0			75	120	0	12	100	0	0	0			
70		73	TIZCE		1001					EAv	75	120	45	6	100	0	0	270	129	24								•	109	13	2
	4									TAv	120 120	120 120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
<u> </u>										EAV	120	120	U	U	100	U	U	U										L			

				Data	inputs															Droughtine	ss calculat	ions									
	1		ı	ı		Av. wat		Av. wate				1	1	ı	AP wh		1 1							TAv	1	ootatoes	1				Limited
Survey Point	Horizon	Horizon thickness	Texture		Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	TAv/EAv stones	Stones %	AP w	heat	AP(wheat) -MD(wheat)	Start depth	End depth		top/sub soil	non- stone %	TAv stones		AP pot	atoes	AP(potato) -MD(potato)	to ALC grade
	1	33	MCL	0	GOOD	18				TAv	0	33	33	18	100	0	0	594 0			0	33	33	18	100	0	0	594			
	2	33	MZCL	0	POOR	12	6			TAv	33	66	17	12	100	0	0	204			33	66	33	12	100	0	0	396			
	3	54	HZCL	0	POOR	12	6			EAv TAv	33 66	66 120	16 0	6 12	100 100	0	0	96 0		4.00	66	120	4	12	100	0	0	48			
71										EAv	66	120	54	6	100	0	0	324	122	17	100								104	8	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120		0	100	0	0	0			
	5									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	1	31	MCL	0	GOOD	18				TAv	0	31	31	18	100	0	0	558			0	31	31	18	100	0	0	558			
	2	34	MZCL	0	POOR	12	6			EAv TAv	31	31 65	0 19	0 12	100	0	0	0 228			31	65	34	12	100	0	0	408			
	_	55	MZCL	0	POOR	12	6			EAv TAv	31 65	65 120	15 0	6 12	100 100	0	0	90 0			C.F.	420	5	1 42		0					
72	3	55	IVIZCL	U	POUR	12	0			EAv	65	120	55	6	100	0	0	330	121	16	65	120	1 3	12	100	U	0	60	103	7	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
<u> </u>	1	30	MCL	0	GOOD	18				EAv TAv	120	120 30	30	0 18	100	0	0	0 540			0	30	30	18	100	0	0	540			
	2	38	MZCL	0	POOR	12	6			EAv TAv	0 30	30 68	0 20	0 12	100 100	0	0	0 240			30	68	38	12	100	0	0	456			
							0			EAv	30	68	18	6	100	0	0	108				•	30	•							
73	3	52	MZCL	0	POOR	12	- 6			TAv EAv	68 68	120 120	0 52	12 6	100	0	0	0 312	120	15	68	120	2	12	100	0	0	24	102	6	2
	4									TAv EAv	120	120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAv	120 120	120 120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	1	28	MCL	0	GOOD	18				EAv TAv	120	120 28	0 28	0 18	100 100	0	0	0 504			0	28	28	18	100	0	0	504			
										EAv	0	28	0	0	100	0	0	0			_										
	2	19	ZC	0	MODERATE	15	8			TAv EAv	28 28	47 47	19 0	15 8	100	0	0	285 0			28	47	19	15	100	0	0	285			
74	3	68	С	0	POOR	13	7			TAv EAv	47 47	115 115	3	13 7	100 100	0	0	39 455	128	24	47	115	23	13	100	0	0	299	109	13	2
	4									TAv	115	115	65 0	0	100	0	0	0			115	115	0	0	100	0	0	0			
	5									EAv TAv	115 115	115 115	0	0	100	0	0	0			115	115	0	1 0	100	0	0	0			
		20	MCL		GOOD	18				EAv TAv	115	115	0 28	0 18	100 100	0	0	0 504				20	20	10		0		504			
	1	28	IVICE	0						EAv	0	28 28	0	0	100	0	0	0			0	28	28	18	100	U	0	504			
	2	27	ZC	0	GOOD	21	15			TAv EAv	28	55 55	22 5	21 15	100 100	0	0	462 75			28	55	27	21	100	0	0	567			
75	3	65	С	0	POOR	13	7			TAv	55	120	0	13	100	0	0	0	150	45	55	120	15	13	100	0	0	195	127	31	1
	4									EAv TAv	55 120	120 120	65 0	7	100 100	0	0	455 0			120	120	0	0	100	0	0	0			
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
										EAv	120	120	0	0	100	0	0	0													
	1	32	MCL	0	GOOD	18				TAv EAv	0	32 32	32 0	18	100	0	0	576 0			0	32	32	18	100	0	0	576			
	2	52	HCL	0	POOR	12	7			TAv EAv	32 32	84 84	18 34	12 7	100 100	0	0	216 238			32	84	38	12	100	0	0	456			
76	3	36	С	0	POOR	13	7			TAv	84	120	0	13	100	0	0	0	128	23	84	120	0	13	100	0	0	0	103	8	2
,,,	4									EAv TAv	84 120	120 120	36 0	7	100	0	0	252 0	120	23	120	120	0	0	100	0	0	0	100	Ü	-
										EAv	120	120	0	0	100	0	0	0													
	5									TAv EAv	120 120	120 120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	1	35	С	0	GOOD	17				TAv EAv	0	35 35	35 0	17	100 100	0	0	595 0			0	35	35	17	100	0	0	595			
	2	20	SL	0	#N/A	#N/A	#N/A			TAv	35	55	15	#N/A	100	0	0	#N/A			35	55	20	#N/A	100	0	0	#N/A			
	3	25	С	0	GOOD	21	15			EAv TAv	35 55	55 80	5 0	#N/A 21	100	0	0	#N/A 0	401/0	#A1 /A	55	80	15	21	100	0	0	315	WN1 / A	481/8	un / c
77	4									EAv TAv	55 80	80 80	25 0	15	100	0	0	375 0	#N/A	#N/A	80			0		0		0	#N/A	#N/A	#N/A
										EAv	80	80	0	0	100	0	0	0				80			100		0				
	5									TAv EAv	80 80	80 80	0	0	100 100	0	0	0			80	80	0	0	100	0	0	0			
										LAV	00	00		U	100	U	U	U													

				Data	inputs				, ,											Droughtine	ss calculat	tions										
Survey		Horizon	I_		Structural	Av. wat	er (soil) EAv	Av. wate	er (stones) EAv		Start	End	Horiz.	TAv/EAv	AP who	TAv/EAv	l		_	AP(wheat)	Start	End	Но		Αv	AP p	otatoes TAv				AP(potato)	Limited to ALC
Point	Horizon	thickness		Stones %	condition	%	%	%	%	TAv/EAv	depth	depth	thickn.	soil	stone	stones	Stones %		vheat	-MD(wheat)	depth	dept	h thic	kn. top	/sub oil	stone %	stones	Stone %	AP pot	atoes	-MD(potato)	grade
	1	33	MCL	0	GOOD	18				TAv EAv	0	33 33	33	18 0	100	0	0	594 0			0	33	3		.8	100	0	0	594			
	2	25	SL	0	#N/A	#N/A	#N/A			TAv EAv	33 33	58 58	17 8	#N/A #N/A	100 100	0	0	#N/A #N/A			33	58	2	5 #	I/A	100	0	0	#N/A			
78	3	62	С	0	POOR	13	7			TAV	58 58	120 120	0 62	13	100	0	0	0	#N/A	#N/A	58	120	1	2	3	100	0	0	156	#N/A	#N/A	#N/A
	4									TAv	120	120	0	0	100	0	0	0			120	120)	0	100	0	0	0			
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	()	0	100	0	0	0			
	1	33	HCL	0	GOOD	18				EAv TAv	120 0	120 33	33	0 18	100 100	0	0	0 594			0	33	3	3	.8	100	0	0	594			
	2	30	HCL	0	POOR	12	7			EAv TAv	0 33	33 63	0 17	0 12	100	0	0	0 204			33	63	3	n I	2	100	0	0	360			
				_						EAv	33	63	13	7	100	0	0	91				120		-	2		0	0				
79	3	57	HZCL	0	POOR	12	6			TAv EAv	63 63	120 120	0 57	12 6	100 100	0	0	342	123	18	63					100			84	104	8	2
	4									TAv EAv	120 120	120 120	0	0	100	0	0	0			120	120	()	0	100	0	0	0			
	5									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	()	0	100	0	0	0			
	1	24	С	0	GOOD	17				TAv EAv	0	24 24	24	17	100	0	0	408			0	24	2	4	7	100	0	0	408			
	2	35	С	0	POOR	13	7			TAV	24	59 59	26	13	100	0	0	338 63			24	59	3	5	.3	100	0	0	455			
80	3	61	ZC	0	POOR	12	7			TAv	59	120	0	12	100	0	0	0	124	19	59	120	1	1	2	100	0	0	132	100	4	2
	4									EAv TAv	59 120	120 120	61 0	7	100 100	0	0	427 0			120	120	- ()	0	100	0	0	0			
	5									EAv TAv	120 120	120 120	0	0	100	0	0	0			120	120) [0	100	0	0	0			
	1	33	MCL	0	GOOD	18				EAv TAv	120		0	0	100	0	0	0 594			0	33			.8	100	0	0	594			
							40			EAv	0	33	0	0	100	0	0	0					•		•							
	2	25	SCL	0	MODERATE	15	10			TAv EAv	33 33	58 58	17 8	15 10	100 100	0	0	255 80			33	58			.5	100	0	0	375			
81	3	22	LMS	0	MODERATE	9	6			TAv EAv	58 58	80 80	0 22	9 6	100	0	0	132	131	26	58	80	1	2	9	100	0	0	108	108	12	2
	4	35	ZC	0	POOR	12	7			TAv EAv	80 80	115 115	0 35	12	100 100	0	0	0 245			80	115	()	.2	100	0	0	0			
	5									TAv EAv	115 115	115 115	0	0	100	0	0	0			115	115	()	0	100	0	0	0			
	1	30	MCL	0	GOOD	18				TAv	0	30	30	18	100	0	0	540			0	30	3	0	.8	100	0	0	540			
	2	50	MCL	0	POOR	12	7			EAv TAv	30	30 80	20	0 12	100 100	0	0	240			30	80	4	0	2	100	0	0	480			
82	3	40	MZCL	0	POOR	12	6			EAv TAv	30 80	80 120	30 0	7 12	100	0	0	210	123	18	80	120	- ()	2	100	0	0	0	102	6	2
82	4									EAv TAv	80 120	120 120	40 0	6	100 100	0	0	240	123	10	120	120	1 () [0	100	0	0	0	102	0	2
	5									EAv TAv	120 120	120 120	0	0	100	0	0	0			120	120			0	100	0		0			
										EAv	120	120	0	0	100	0	0	0														
	1	33	MCL	0	GOOD	18				TAv EAv	0	33 33	33 0	18 0	100 100	0	0	594 0			0	33			.8	100	0	0	594			
	2	21	HCL	0	POOR	12	7			TAv EAv	33 33	54 54	17 4	12 7	100	0	0	204 28			33	54	2	1	.2	100	0	0	252			
83	3	33	SCL	0	MODERATE	15	10			TAv EAv	54 54	87 87	0 33	15 10	100 100	0	0	0 330	135	31	54	87	1	6	.5	100	0	0	240	109	13	1
	4	33	HZCL	0	POOR	12	6			TAV	87 87	120 120	0	12	100	0	0	0			87	120)	.2	100	0	0	0			
	5									TAv	120	120	0	0	100	0	0	0			120	120)	0	100	0	0	0			
	1	34	MCL	0	GOOD	18				EAv TAv	120 0	120 34	0 34	0 18	100 100	0	0	0 612			0	34	3	4	.8	100	0	0	612			
	2	36	С	0	POOR	13	7			EAv TAv	0 34	34 70	0 16	0 13	100	0	0	0 208			34	70	3	6	.3	100	0	0	468			
	3	25	LFS	0	MODERATE	15	13			EAv TAv	34 70	70 95	20	7	100	0	0	140			70	95	1 (5	100	0	0	0			
84										EAv	70	95	25	13	100	0	0	325	157	52							0			108	12	1
	4	20	SC	0	GOOD	19	14			TAv EAv	95 95	115 115	20	19 14	100 100	0	0	280			95	115			.9	100	U	0	0			
	5									TAv EAv	115 115	115 115	0	0	100 100	0	0	0			115	115	()	0	100	0	0	0			

				Data	inputs															Droughtine	ss calculat	tions									
			1	1		Av. wat		Av. wate				1		I .	AP wh							1		TAv	1	potatoes	1				Limited
Survey Point	Horizon	Horizon thickness		Stones %	Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	stones	Stones %	AP w	heat	AP(wheat) -MD(wheat)	Start depth	End depth		n. top/sub	non- stone %	TAv stone		AP pot	atoes	AP(potato) -MD(potato)	to ALC grade
	1	23	С	0	GOOD	17				TAv	0	23	23	17 0	100	0	0	391			0	23	23	17	100	0	0	391			
	2	52	MZCL	0	POOR	12	6			TAv	23	75	27	12	100	0	0	324			23	75	47	12	100	0	0	564			
85	3	20	MSL	0	MODERATE	15	11			EAv TAv	23 75	75 95	25 0	6 15	100	0	0	150 0	124	19	75	95	0	15	100	0	0	0	96	0	2
85	4	25	MZCL	0	POOR	12	6			EAv TAv	75 95	95 120	20	11 12	100 100	0	0	220 0	124	15	95	120	0	12	100	0	1 0	0	50	U	2
		25	IVIZCE	_	TOOK					EAv	95	120	25	6	100	0	0	150													
	5									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	1	35	MCL	0	GOOD	18				TAv EAv	0	35 35	35 0	18 0	100 100	0	0	630			0	35	35	18	100	0	0	630			
	2	10	HCL	0	GOOD	21	14			TAv	35	45	10	21	100	0	0	210			35	45	10	21	100	0	0	210			
86	3	20	С	0	POOR	13	7			EAv TAv	35 45	45 65	5	14 13	100	0	0	65	136	31	45	65	20	13	100	0	0	260	117	21	1
80	4	50	С	0	POOR	13	7			EAv TAv	45 65	65 115	15 0	7	100 100	0	0	105 0	130	31	65	115	5	13	100	0	0	65	11/	21	1
										EAv	65	115	50	7	100	0	0	350							,						
	5									TAv EAv	115 115	115 115	0	0	100 100	0	0	0			115	115	0	0	100	0	0	0			
	1	25	MZCL	0	GOOD	19				TAv	0	25 25	25 0	19 0	100 100	0	0	475 0			0	25	25	19	100	0	0	475			
	2	20	HZCL	0	POOR	12	6			TAV	25 25	45 45	20	12	100	0	0	240			25	45	20	12	100	0	0	240			
87	3	75	HZCL	0	POOR	12	6			TAv	45	120	5	12	100	0	0	60	120	15	45	120	25	12	100	0	0	300	102	6	2
	4									EAv TAv	45 120	120 120	70 0	6	100	0	0	420 0	120	13	120	120	0	0	100	0	0	0	102	Ü	-
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120		0	100	0	0	0			
										EAv	120	120	0	0	100	0	0	0													
	1	45	MCL	0	GOOD	18				TAv EAv	0	45 45	45 0	18	100 100	0	0	810			0	45	45	18	100	0	0	810			
	2	25	HCL	0	GOOD	21	14			TAv EAv	45 45	70 70	5 20	21 14	100 100	0	0	105 280			45	70	25	21	100	0	0	525			
88	3	20	С	0	POOR	13	7			TAv	70	90	0	13	100	0	0	0	161	56	70	90	0	13	100	0	0	0	134	38	1
	4	30	LMS	0	GOOD	12	9			EAv TAv	70 90	90 120	20 0	7 12	100 100	0	0	140 0			90	120	0	12	100	0	0	0			
	5									EAv TAv	90 120	120 120	30 0	9	100	0	0	270			120	120	0	1 0	100	0	1 0	0			
	1	33	MCL	0	GOOD	18				EAv TAv	120	120 33	0	0 18	100 100	0	0	0 594			0	33		10		0	0	594			
	1			U						EAv	0	33	0	0	100	0	0	0					33		100						
	2	10	MCL	0	POOR	12	7			TAv EAv	33	43 43	10 0	12 7	100	0	0	120			33	43	10	12	100	0	0	120			
89	3	29	LMS	0	MODERATE	9	6			TAv EAv	43 43	72 72	7 22	9	100 100	0	0	63 132	125	20	43	72	27	9	100	0	0	243	96	0	2
	4	48	С	0	POOR	13	7			TAv	72	120	0	13	100	0	0	0			72	120	0	13	100	0	0	0			
	5									EAv TAv	72 120	120 120	48 0	7	100	0	0	336			120	120	0	0	100	0	0	0			
-	1	28	MCL	0	GOOD	18				EAv TAv	120	120 28	0 28	0 18	100 100	0	0	0 504			0	28	28	18	100	0	0	504			
	2	12	HCL	0	POOR	12	7			EAv TAv	0 28	28 40	0	0	100 100	0	0	0			28	40			100	0		144			
										EAv	28	40	0	7	100	0	0	0													
90	3	80	С	0	POOR	13	7			TAv EAv	40 40	120 120	10 70	13 7	100	0	0	130 490	127	22	40	120	30	13	100	0	0	390	104	8	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
	1	32	MCL	0	GOOD	18				EAv TAv	120 0	120 32	0 32	0 18	100 100	0	0	0 576			0	32	32	18	100	0	0	576			
	2	31	LMS	0	MODERATE		6			EAv TAv	0 32	32 63	0 18	0	100 100	0	0	0 162			32	63	31		100	0	0	279			
				_						EAv	32	63	13	6	100	0	0	78													
91	3	57	MZCL	0	POOR	12	6			TAv EAv	63 63	120 120	0 57	12 6	100 100	0	0	0 342	116	11	63	120		12	100	0	0	84	94	-2	2
	4									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
	5									TAV	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	0	0	0			
L										EAV	120	120	U	U	100	U	U	U			j										

Note Notice Not					Data	inputs														Droughtine	ss calcula	tions									
Seed Column Col	—		ı	1	1			T .		1		1		1			- I			1		Ι		TAv				1			Limited
2 18 195 10 464 180 5 10 10 10 10 10 10 10		Horizon	thickness			condition	%					depth	thickn.	soil	stone		Stones %		heat		depth	depth	thick	n. top/sub	stone %		Stone %	i i	tatoes	AP(potato) -MD(potato)	to ALC grade
1 15 15 15 15 15 15 15	-	1	40	FSL	0	GOOD	18		_		·					Ü					0	40	40	18	100	0	0	720			
3		2	18	FSZL	0	RARE	#N/A	9		TAv	40	58	10	#N/A	100	0	0	#N/A			40	58	18	#N/A	100	0	0	#N/A			
1		3	12	ZC.	0	MODERATE	15	8	_				Ü				·				58	70	12	15	100	1 0	0	180			
5	92									EAv	58	70		8	100				#N/A	#N/A									#N/A	#N/A	#N/A
1 20 10 10 10 10 10 10	-	4	40	С	0	POOR	13	/	_									_			70	110	0	13	100	0	0	0			
1 20 MCC 0 COCO 25 MCC 0 COCO 25 MCC 0 COCO 25 MCC 0 MCC	Ī	5								TAv	110	110	0		100			0			110	110	0	0	100	0	0	0			
2 46 m 100 0 500m 12 6		1	30	MCL	0	GOOD	18			TAv	0	30	30	18	100	0	0	540			0	30	30	18	100	0	0	540			
S S S S S S S S S S	-	2	40	HZCI	0	POOR	12	6													30	70	40	12	100	0	0	480			
10										EAv	30	70	20	6	100	0		120								,					
4	93	3	50	HZCL	0	POOR	12	6	_										120	15	70	120	0	12	100	0	0	0	102	6	2
1 32 MS, 0 6000 17		4							_			120									120	120	0	0	100	0	0	0			
\$\frac{3}{2}\$ \$\frac{35}{4}\$ \$\frac{1}{6}\$ \$	ŀ	5								TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	0	0	0			
2 48 C 0 POOR 13 7 POOR 13 7 POOR 13 1 7 POOR 13 1 7 POOR 13 P	\rightarrow	1	32	sc	0	GOOD	17		_												0	32	32	17	100	1 0	0	544			
94 3 30 C C 0 POOR 13 7 7 170 80 110 0 130 0 0 0 0 120 120 120 150 150 0 0 0 0 120 120 120 150 150 0 0 0 0 120 120 120 120 120 120 120 12	Ī									EAv	0	32	0	0	100	0	0	0				- 52									
Second	-	2	48	С	0	POOR	13	7								-					32	80	38	13	100	0	0	494	ł		
4	94	3	30	С	0	POOR	13	7											120	15	80	110	0	13	100	0	0	0	104	8	2
5 TAV 110 110 0 0 100 0 0 0	Į	4								TAv	110	110	0	0	100	0	0	0			110	110	0	0	100	0	0	0			
1 32 M/S. 0 6000 17 17 17 10 0 10 10		E							_									•			110	110	0	0	100	1 0	0	0			
95 3 45 MSL 0 POOR 11 8 1 TAV 90 90 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0										EAv	110	110	0	0	100	0	0	0													
2 13 St. 0 mN/A mN/A mN/A mN/A mN/A mN/A mN/A mN/A	-	11	32	MSL	0	GOOD	17		_		-					_	-				0	32	32	17	100	0	0	544			
95 3 45 MSL 0 POOR 11 8 17AV 45 90 5 11 100 0 0 0 55 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 275 11 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ļ	2	13	SL	0	#N/A	#N/A	#N/A	/A	TAv	32	45	13	#N/A	100	0	0	#N/A			32	45	13	#N/A	100	0	0	#N/A			
S	05	3	45	MSL	0	POOR	11	8	_										### /A	#A1 /A	45	90	25	11	100	0	0	275	#81/8	#81 / A	#N/A
Far Section Far Sectio	93	1																	#IN/A	#N/A	90	gn.	1 0	1 0	100	1 0	0	0	#IN/A	#N/A	#IN/A
1	Ī									EAv	90	90	0	0	100	0	0	0				•					•				
1 45 MCL 0 GOOD 18	-	5										90						_			90	90	0	0	100	0	0	0			
96		1	45	MCL	0	GOOD	18			TAv	0	45	45	18	100	0	0				0	45	45	18	100	0	0	810			
96 3 55 C 0 POOR 13 7	+	2	5	HCL	0	GOOD	21	14	1							_					45	50	5	21	100	0	0	105			
Fav So 105 55 7 100 0 0 385 105 105 0 0 100 0 0 0 0 100 0	-	3	55		0	POOR	13	7													50	105	20	13	100	1 0	0	260			
97 3	96		33		0	TOOK	13			EAv	50	105	55	7	100	0	0	385	130	25			•						118	22	2
1 27 MCL 0 GOOD 18 TAV 105 105 0 0 100 0 0 0 0 0 0	+	4							_									_			105	105	0	0	100	0	0	0			
1 27 MCL 0 GOOD 18	ļ	5								TAv	105	105	0	0	100	0	0				105	105	0	0	100	0	0	0			
97 3 C 0 POOR 13 7 TAV 27 60 23 13 100 0 0 299 7 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	1	27	MCL	0	GOOD	18			TAv		27	27	18	100			486			0	27	27	18	100	0	0	486			
97 3	Ī	2	33		0	POOR	13	7	1		0 27						0				27	60	33	13	100	0	1 0	429			
97 4	ŀ		33			TOOK	13			EAv	27	60	10	7	100	0	0	70													
4	97	3																	86	-19	60	60	0	0	100	0	0	0	92	-4	3a
5	ļ	4								TAv	60	60	0	0	100	0	0	0			60	60	10	0	100	0	0	0			
EAV 60 60 0 0 100 0 0 0 0 1 1 35 SCL 0 GOOD 17	+	5																			60	60	0	0	100	0	0	0			
2 17 LFS 0 GOOD 15 13 TAV 35 52 15 15 100 0 0 0 225	——	1	25	SCI	0	GOOD	17						-								0	35	25	17	100		0	505			
EAV 35 52 2 13 100 0 0 26	ļ									EAv	0	35	0	0	100	0	0	0													
	ŀ	2	17	LFS	0	GOOD	15	13	3				_			_					35	52	17	15	100	0	0	255			
98 3 23 LS 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A	98	3	23	LS	0	#N/A	#N/A	#N/A	/A	TAv	52	75	0	#N/A	100	0	0	#N/A	#N/A	#N/A	52	75	18	#N/A	100	0	0	#N/A	#N/A	#N/A	#N/A
4 45 C 0 POOR 13 7 TAV 75 120 0 13 100 0 0 0 75 120 0 13 100 0 0 0	+	4	45	С	0	POOR	13	7		TAv	75	120	0		100			0			75	120	0	13	100	0	0	0			
EAV 75 120 45 7 100 0 0 315 5	F	5							4												120	120	0	0	100		0	0			
S		,											-								120	120			100	. 0	, v				

				Data	inputs															Droughtine	ss calcula	tions									
	1			ı		Av. wat		Av. wate				ı	ı		AP wh		1					ı		TAv	AP	potato		1			Limited
Survey Point	Horizon	Horizon thickness	Texture		Structural condition	TAv %	EAv %	TAv %	EAv %	TAv/EAv	Start depth	End depth	Horiz. thickn.	TAv/EAv soil	% non stone	TAv/EAv stones	Stones %	AP w	heat	AP(wheat) -MD(wheat)	Start depth	End dept	n thick	n. top/su	stone %	sto	Stone %		atoes	AP(potato) -MD(potato)	to ALC grade
	1	33	LS	0	GOOD	#N/A				TAv	0	33 33	33	#N/A	100	0	0	#N/A			0	33	33	#N/A	100	(0	#N/A			
	2	12	MSL	0	MODERATE	15	11			TAv	33	45	12	15	100	0	0	180			33	45	12	15	100	(0	180			
	3	25	MSL	0	MODERATE	15	11			EAv TAv	33 45	45 70	0 5	11 15	100	0	0	75			45	70	25	15	100	1 (0	375			
99										EAv	45	70	20	11	100	0	0	220	#N/A	#N/A									#N/A	#N/A	#N/A
	4	50	SL	0	#N/A	#N/A	#N/A			TAv EAv	70 70	120 120	0 50	#N/A #N/A	100	0	0	#N/A #N/A			70	120	0	#N/A	100	(0	#N/A			
	5									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	(0	0			
	1	42	SCL	0	GOOD	17				EAv TAv	120 0	120 42	0 42	0 17	100 100	0	0	714			0	42	42	17	100	(0	714			
	2	23	SCL	0	GOOD	19	14			EAv TAv	0 42	42 65	0 8	0 19	100	0	0	0 152	ł		42	65	23	19	100	-	0	437			
										EAv	42	65	15	14	100	0	0	210								_					
100	3	55	HZCL	0	POOR	12	6			TAv EAv	65 65	120 120	0 55	12 6	100	0	0	330	141	36	65	120	5	12	100		0	60	121	26	1
	4									TAv	120	120	0	0	100	0	0	0	1		120	120	0	0	100	(0	0			
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100		0	0			
	1	25	MCL	_	GOOD	10				EAv	120	120	0	0 18	100 100	0	0	0 630			_	35		10			0	630			
	1	35	IVICE			18				TAv EAv	0	35 35	35 0	0	100	0	0	0			0				100						
	2	40	С	0	POOR	13	7			TAv	35 35	75 75	15 25	13 7	100	0	0	195 175			35	75	35	13	100	(0	455			
101	3	30	С	0	POOR	13	7			TAv	75	105	0	13	100	0	0	0	121	16	75	105	0	13	100	(0	0	109	13	2
	4									EAv TAv	75 105	105 105	30 0	7	100	0	0	210			105	105	0	0	100		0	0			_
										EAv	105	105	0	0	100	0	0	0													
	5									TAv	105 105	105 105	0	0	100	0	0	0	ł		105	105	0	0	100		0	0			
	1	45	MCL	0	GOOD	18				TAv	0	45	45 0	18	100	0	0	810 0			0	45	45	18	100		0	810			
	2	65	С	0	POOR	13	7			EAv TAv	45	45 110	5	13	100 100	0	0	65			45	110	25	13	100	(0	325			
	3									EAv TAv	45 110	110 110	60 0	7	100 100	0	0	420 0	ł		110	110	0	0	100		0	0			
102										EAv	110	110	0	0	100	0	0	0	130	25									114	18	2
	4									TAv EAv	110 110	110 110	0	0	100	0	0	0	ł		110	110	0	0	100	(0	0			
	5									TAv	110	110	0	0	100	0	0	0			110	110	0	0	100	(0	0			
	1	45	MSL	0	GOOD	17				EAv TAv	110	110 45	0 45	0 17	100 100	0	0	765			0	45	45	17	100		0	765			
	2	45	MSL	0	MODERATE	15	11			EAv TAv	0 45	45 90	5	0 15	100	0	0	0 75			45	90	25	15	100		0	375			
							- 11			EAv	45	90	40	11	100	0	0	440	1									3/3			
103	3	30	С	0	POOR	13	7			TAv EAv	90	120 120	30	13 7	100	0	0	210	149	44	90	120	0	13	100		0	0	114	18	1
	4									TAv	120	120	0	0	100	0	0	0			120	120	0	0	100	(0	0			
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	(0	0			
-	1	38	MSL	0	GOOD	17				EAv TAv	120	120 38	0 38	0 17	100 100	0	0	0 646			0	38	38	17	100		0	646			
										EAv	0	38	0	0	100	0	0	0													
	2	57	MSL	0	MODERATE	15	11			TAv EAv	38 38	95 95	12 45	15 11	100	0	0	180 495			38	95	32	15	100		0	480			
104	3	25	С	0	POOR	13	7			TAV	95 95	120	0 25	13	100 100	0	0	0 175	150	45	95	120	0	13	100	(0	0	113	17	1
	4									TAv	120	120 120	0	0	100	0	0	0			120	120	0	0	100	(0	0			
	5									EAv TAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100		0	0			
	,									EAv	120	120	0	0	100	0	0	0													
	11	26	HCL	0	GOOD	18				TAv EAv	0	26 26	26 0	18 0	100 100	0	0	468 0			0	26	26	18	100	(0	468			
	2	25	HCL	0	POOR	12	7			TAv	26	51	24	12	100	0	0	288			26	51	25	12	100		0	300			
105	3	69	HZCL	0	POOR	12	6			TAv	26 51	51 120	0	7 12	100	0	0	7	440	42	51	120	19	12	100		0	228	100		
105	4									EAv TAv	51 120	120 120	69	6	100	0	0	414	118	13	120					1 0		0	100	4	2
										EAv	120	120	0	0	100	0	0	0							100		•	_			
	5									TAv EAv	120 120	120 120	0	0	100 100	0	0	0			120	120	0	0	100	(0	0			
										LAV	120	120	U	U	100	U	U	U													

Notice Final Point Horizon H					Data	inputs															Droughtine	ess calcula	tions									
Survey Mortion Morti							Av. wat	ter (soil)	Av. wate	er (stones)						AP wh	eat									AP p	otatoes					Limited
106 2 20 MS		Horizon		Texture	Stones %						TAv/EAv							Stones 9	6 AP v	/heat					top/sub			Stone %	AP po	tatoes		to ALC grade
2 20 MSL 0 6000 17 33 TAW 38 55 15 17 100 0 0 255 157 157 158 150 0 0 340 158 150 0 0 0 0 0 0 0 0 0		1	35	MSL	0	GOOD	17				TAv	0		35	17		0	0	595			0	35	35	17	100	0	0	595			
106 3 65 SCL 0 MODERATE 15 10 10 17AV 525 120 0 0 0 0 0 650 157 52 120 10 0 0 0 0 650 157 52 120 10 0 0 0 0 0 650 157 52 120 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												_					-		·	ļ										Į.		
100 3		2	20	MSL	0	GOOD	17	13												ł		35	55	20	17	100	0	0	340	ł		
107 107 108		2	GE.	SCI	0	MODERATE	15	10						,								CC	120	1 1 5	10	100	0	0	225			
A	106		0.5	JCL	- 0	WIODERATE	13	10									-			157	52		120	13	13	100			223	116	20	1
1		4																0		1		120	120	0	0	100	0	0	0	1		
107 2											EAv	120	120	0	0	100	0	0	0	1										1		
1 29 SCL 0 GOOD 17		5												0					0			120	120	0	0	100	0	0	0			
107 3																	-		U													
2 56 SCL 0 GOOD 19 144		1	29	SCL	0	GOOD	17										-			ł		0	29	29	17	100	0	0	493	ł		
107 1/4 1/5		2	56	SCI	0	GOOD	10	1/						-					-			20	0.5	1 41	10	100	0	0	770			
107 3			30	JCL	- 0	GOOD	13	17									-			ł		23	63	41	13	100			113	i		
A		3																				85	85	0	0	100	0	0	0			
EAV 85 85 85 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	107										EAv	85	85	0	0	100	0	0	0	138	33				•					12/	32	1
Tay S S S O O 100 O O O O O O O O O		4													-		0	0	0			85	85	0	0	100	0	0	0	1		
1 38 MCL 0 GOOD 18														-	-		-															
1 38 MCL 0 GOOD 18		5																				85	85	0	0	100	0	0	0	ł		
152		1	20	MCI	0	GOOD	10												-			0	20	20	10	100	0	0	601			
152 37 C 0 GOOD 21 15			36	IVICE		GOOD	10					_								1			30	30	10	100			004	i		
152 3 40 C 0 GOOD 21 15		2	37	С	0	GOOD	21	15				_			-		-	0		1		38	75	32	21	100	0	0	672	1		
152 EAV 75 115 40 15 100 0 0 0 600 191 86 115 115 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0											EAv	38	75	25	15	100	0	0	375						•					1		
4	152	3	40	С	0	GOOD	21	15												191	86	75	115	0	21	100	0	0	0	136	40	1
EAV 115 115 0 0 100 0 0 0 0 0 0	132																-			131										150	-10	-
5		4												-					·			115	115	0	0	100	0	0	0			
1 41 SCL 0 GOOD 17 TAV 0 41 41 17 100 0 0 0 697 2 29 SCL 0 POOR 13 8 TAV 41 70 9 13 100 0 0 0 117 3 50 R 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		5																	-			115	115	0	n	100	0	0	0			
1 41 SCL 0 GOOD 17 TAV 0 41 41 17 100 0 0 697 EAV 0 41 0 0 100 0 0 0 0 0 117 TAV 41 70 9 13 100 0 0 0 117 EAV 41 70 9 13 100 0 0 0 160 TAV 41 70 20 8 100 0 0 160 EAV 70 120 50 #N/A 100 0 0 18/A 4 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																						113	113			100	- 0	- 0				
2 29 SCL 0 POOR 13 8 1 TAV 41 70 9 13 100 0 0 117 15 15 15 15 15 15 15 15 15 15 15 15 15		1	41	SCL	0	GOOD	17										-					0	41	41	17	100	0	0	697			
153											EAv	0	41	0	0	100	0	0	0													
153		2	29	SCL	0	POOR	13	8														41	70	29	13	100	0	0	377			
153																																
4 TAV 120 120 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	153	3	50	R	0	#N/A	#N/A	#N/A												#N/A	#N/A	70	120	0	#N/A	100	0	0	#N/A	#N/A	#N/A	#N/A
EAV 120 120 0 0 100 0 0 0 0 120 120 120 0 0 100 0 0 0		1																				120	120	0	n	100	0	1 0	0			
5 TAV 120 120 0 0 100 0 0 0 120 120 120 0 0 100 0 0 0		-																	0			120	120	U	U	100	U	U	U			
		5													-		-		0			120	120	0	0	100	0	0	0			
											EAv	120	120	0	0	100	0	0	0													

Annex 11B.3 Laboratory Results

Sample nomenclature:

NG-YG-NOS "survey point no" "Horizon number"

Laboratory data not applicable to this site have been redacted to avoid confusion.

Survey point number corresponds with the numbers on **Figure 11.5**, **Volume 5**, **Document 5.4.11**, and in the other Annexes.

Page intentionally blank

Contact: WARDELL ARMSTRONG LLP

CITY QUADRANT

11 WATERLOO SQUARE **NEWCASTLE UPON TYNE**

NE1 4DP

Tel.:

Client: GM11455GMGE

H448

Please quote the above code for all enquiries

Distributor : NT54881

: KIRSTY ELLIOTT Local Rep

Telephone

Sample Matrix : Agricultural Soil

Laboratory Reference

Card Number

69151/22

Date Received 17-May-22 **Date Reported** 27-May-22

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l	(Availa	ble)
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Р	K	Mg	Р	K	Mg
370237/22	1	NG-YG-NOS 77 H1	7.0	0	1	5	5.2	87	258
		No cropping details given							
370238/22	2	NG-YG-NOS 77 H2	5.5	0	0	3	<2.5	37	170
		No cropping details given	3.3	U	U	3	<2.5	31	170
370239/22	3	NG-YG-NOS 77 H3	F 0	•		4	-0.5		200
		No cropping details given	5.2	0	1	4	<2.5	66	200
370240/22	4	NG-YG-NOS 85 H1				_			
07 02 10/22	·	No cropping details given	7.2	0	2-	4	9.0	126	229
370241/22	5	NG-YG-NOS 98 H1			4	•	00.0	404	407
		No cropping details given	6.2	2	1	3	20.8	104	107

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron On behalf of NRM

Date

27/05/22

MICRO NUTRIENT REPORT

DATE **27th May 2022**

SAMPLES FROM GM11455GMGE

WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

Tel:

Reference: 69151/370237/22	Field Name: NG-YG-NOS 77 H1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.3	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		4						,
Silt (0.063 - 0.002mm) %		42						
Clay (< 0.002mm) %		54]					
Textural Classification		Clay	2					

Reference: 69151/370238/22	Field Name: NG-YG-NOS 77 H2	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		1.3	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		74	1					,
Silt (0.063 - 0.002mm) %		12						
Clay (< 0.002mm) %		14						
Textural Classification	Sand	dy Loam	2					

Reference: 69151/370239/22	Field Name: NG-YG-NOS 77 H3	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		3.0	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		5			•			
Silt (0.063 - 0.002mm) %		41						
Clay (< 0.002mm) %		54						
Textural Classification		Clay	2					

Reference: 69151/370240/22	Field Name: NG-YG-NOS 85 H1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		5.8	1	OM level	data not ava	ilable for th	is crop	
Sand (2.00 - 0.063mm) %		1						
Silt (0.063 - 0.002mm) %		40						
Clay (< 0.002mm) %		59						
Textural Classification		Clay	2					

Reference: 69151/370241/22	Field Name: NG-YG-NOS 98 H1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		3.5	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		66			,			
Silt (0.063 - 0.002mm) %		14						
Clay (< 0.002mm) %		20						
Textural Classification	Sandy Cla	ay Loam	2					

Notes (*)

- (1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.
- (2) In calcareous soils the sand, silt and clay sized fractions are likely to contain particles of carbonate which may result in the incorrect classification of soil type.

DATE 27th May 2022 SAMPLES FROM GM11455GMGE WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

SAMPLED BY KIRSTY ELLIOTT

NT54881

Report reference 69151/22

Tel:

Fertiliser Recommendations

The phosphate and potash recommendations shown below, are those required to replace the offtake and maintain target soil indices. The larger recommended applications for soils below target index will allow the soil to build up to this target index over a number of years. Not applying fertiliser to soils which are above target index will allow the soil to run down over a number of years to the target index.

The recommendation should be increased or decreased where yields are substantially more or less than that specified. The amount to apply can be calculated using the expected yield and values for the offtake of phosphate and potash per tonne of yield given in the RB209 9th edition.

All recommendations are given for the mid-point of each Index.

Where a soil analysis value (as given by the laboratory) is close to the range of an adjacent Index, the recommendation may be reduced or increased slightly taking account of the recommendation given for the adjacent Index. Small adjustments of less than 10 kg/ha are generally not justified.

Efficient use of P and K is most likely to be achieved on soils that are well structured and enable good rooting.

For visual evaluation of soil structure (VESS), a score on 1 or 2 would be considered adequate.

Don't forget to deduct nutrients applied as organic manures.

For Nitrogen recommendations please refer to the RB209 9th edition or seek advice from an FACTS qualified adviser.

Target Indices:

Arable, Forage, Grassland and Potato Crops: P Index 2, K Index 2-

(In rotations where most crops are Autumn-sown, soils are in good condition and P is applied annually, high index 1 can be an adequate target.)

Vegetables and Bulbs: P Index 3. K Index 2+

(If vegetables are only grown occasionally as part of an arable rotation, it would be most economic to target index 2 for arable and forage crops.)

Fruit Vines and Hops: P Index 2, K Index 2, Mg Index 2

(Note: Cider apples respond to K Index 3, Mg Index 3)

A lime recommendation is usually for a 20cm depth of cultivated soil or a 15cm depth of grassland soil. Where soil is acid below 20 cm and soils are ploughed for arable crops, a proportionately larger quantity of lime should be applied. However, if more than 10 t/ha is needed, half should be deeply cultivated into the soil and ploughed down, with the remainder applied to the surface and worked in.

For established grassland or other situations where there is no, or only minimal soil cultivation, no more than 7.5 t/ha of lime should be applied in one application. In these situations, applications of lime change the pH below the surface very slowly. Consequently, the underlying soil should not be allowed to become too acidic because this will affect the root growth and thus limit nutrient and water uptake, which will adversely affect yield.

Field Name / Ref / Soil Type NG-YG-NOS 77 H1 370237 / Heavy	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P205	K20	MgO	I T/Ac Te/Ha	Lime (Arable) 0 0	(Grass) 0 0
Field Name / Ref / Soil Type NG-YG-NOS 77 H2 370238 / Medium	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P205	K20	MgO	l T/Ac Te/Ha	Lime (Arable) 3.4 8.4	(Grass) 1.5 3.7
Field Name / Ref / Soil Type NG-YG-NOS 77 H3 370239 / Heavy	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P205	K20	MgO	l T/Ac Te/Ha	Lime (Arable) 4.9 12.0	(Grass) 2.4 6.0
Field Name / Ref / Soil Type NG-YG-NOS 85 H1 370240 / Heavy	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P205	K20	MgO	l T/Ac Te/Ha	Lime (Arable) 0 0	(Grass) 0 0
Field Name / Ref / Soil Type NG-YG-NOS 98 H1 370241 / Medium	Last Crop / Next Crop Not Given / Not Given	Units/Acre Kg/Ha	P205	K20	MgO	I T/Ac Te/Ha	Lime (Arable) 1.4 3.5	(Grass) 0 0

Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation is given, either no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne.

NRM is a UKAS accredited laboratory to ISO/IEC 17025

Contact: WARDELL ARMSTRONG LLP

CITY QUADRANT

11 WATERLOO SQUARE NEWCASTLE UPON TYNE

NE1 4DP

Tel.:

Client: GM11455GMGE

|H448

Please quote the above code for all enquiries

Distributor : NT54881

Local Rep : KIRSTY ELLIOTT

Telephone :

Sample Matrix : Agricultural Soil

Laboratory Reference
Card Number 69150/22

Date Received 17-May-22 Date Reported 27-May-22

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l	(Availa	ble)
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Р	К	Mg	Р	к	Mg
370232/22	6	NG-YG-NOS 80 H1	7.4				11.0	04	057
		No cropping details given	7.4	1	1	5	11.0	84	257

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron On behalf of NRM Date 27/05/22

Contact: WARDELL ARMSTRONG LLP

CITY QUADRANT

11 WATERLOO SQUARE **NEWCASTLE UPON TYNE**

NE1 4DP

Tel.:

Client: GM11455GMGE

H448

Please quote the above code for all enquiries

Distributor : NT54881

: KIRSTY ELLIOTT Local Rep

Telephone

Sample Matrix : Agricultural Soil

Laboratory Reference Card Number 69150/22

> **Date Received** 17-May-22

> **Date Reported** 27-May-22

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l	(Availa	ble)
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Р	К	Mg	Р	K	Mg
370233/22	7	NG-YG-NOS 80 H2 No cropping details given	7.7	0	1	6	3.8	81	545
370234/22	8	NG-YG-NOS 80 H3 No cropping details given	7.9	0	1	7	<2.5	73	995
370235/22	9	NG-YG-NOS 107 H1 No cropping details given	6.6	2	2-	3	21.6	155	167
370236/22	10	NG-YG-NOS 107 H2 No cropping details given	7.0	0	1	3	9.2	112	151

If general fertiliser and lime recommendations have been requested, these are given on the following sheets.

The analytical methods used are as described in DEFRA Reference Book 427

The index values are determined from the AHDB Fertiliser Recommendations RB209 9th Edition.

Released by Sandy Cameron On behalf of NRM

Date

27/05/22

MICRO NUTRIENT REPORT

DATE 27th May 2022

SAMPLES FROM GM11455GMGE

WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

Γel:

Reference: 69150/370232/22	Field Name: NG-YG-NOS 80 H1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		6.3	1	OM level	data not ava	ilable for th	is crop	
Sand (2.00 - 0.063mm) %		0						
Silt (0.063 - 0.002mm) %		39						
Clay (< 0.002mm) %		61						

Reference: 69150/370233/22	Field Name: NG-YG-NOS 80 H2	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		4.5	1	OM level	data not ava	ailable for th	is crop	

MICRO NUTRIENT REPORT

DATE **27th May 2022**

SAMPLES FROM GM11455GMGE

WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

Tel:

Reference: 69150/370233/22	Field Name: NG-YG-NOS 80 H2	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Sand (2.00 - 0.063mm) %		0						
Silt (0.063 - 0.002mm) %		36						
Clay (< 0.002mm) %		64						

Reference: 69150/370234/22	Field Name: NG-YG-NOS 80 H3	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		3.7	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		2						
Silt (0.063 - 0.002mm) %		45						
Clay (< 0.002mm) %		53						
Textural Classification	S	Silty Clay	2					

Reference: 69150/370235/22	Field Name: NG-YG-NOS 107 H1	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		2.5	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		55			,			
Silt (0.063 - 0.002mm) %		19						
Clay (< 0.002mm) %		26						
Textural Classification	Sandy Cla	ay Loam	2					

Reference: 69150/370236/22	Field Name: NG-YG-NOS 107 H2	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
Organic matter (LOI) %		1.5	1	OM level	data not ava	ilable for th	s crop	
Sand (2.00 - 0.063mm) %		63	1					
Silt (0.063 - 0.002mm) %		17	1					
Clay (< 0.002mm) %		20						
Textural Classification	Sandy Cla	ay Loam	2					

Notes (*)

- (1) NRM considers Organic soils to contain between 10-20% organic material with Peaty soils containing over 20%. The optimum ranges for Organic Matter which have been set are dependent on the soil type and the cropping but these must be viewed as guidance values only.
- (2) In calcareous soils the sand, silt and clay sized fractions are likely to contain particles of carbonate which may result in the incorrect classification of soil type.

DATE 27th May 2022 SAMPLES FROM GM11455GMGE WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

SAMPLED BY KIRSTY ELLIOTT

.....

NT54881

Report reference 69150/22

Tel: Fax:

Fertiliser Recommendations

The phosphate and potash recommendations shown below, are those required to replace the offtake and maintain target soil indices. The larger recommended applications for soils below target index will allow the soil to build up to this target index over a number of years. Not applying fertiliser to soils which are above target index will allow the soil to run down over a number of years to the target index.

The recommendation should be increased or decreased where yields are substantially more or less than that specified. The amount to apply can be calculated using the expected yield and values for the offtake of phosphate and potash per tonne of yield given in the RB209 9th edition.

All recommendations are given for the mid-point of each Index.

Where a soil analysis value (as given by the laboratory) is close to the range of an adjacent Index, the recommendation may be reduced or increased slightly taking account of the recommendation given for the adjacent Index. Small adjustments of less than 10 kg/ha are generally not justified.

Efficient use of P and K is most likely to be achieved on soils that are well structured and enable good rooting.

For visual evaluation of soil structure (VESS), a score on 1 or 2 would be considered adequate.

Don't forget to deduct nutrients applied as organic manures.

For Nitrogen recommendations please refer to the RB209 9th edition or seek advice from an FACTS qualified adviser.

Target Indices:

Arable, Forage, Grassland and Potato Crops: P Index 2, K Index 2-

(In rotations where most crops are Autumn-sown, soils are in good condition and P is applied annually, high index 1 can be an adequate target.)

Vegetables and Bulbs: P Index 3, K Index 2+

(If vegetables are only grown occasionally as part of an arable rotation, it would be most economic to target index 2 for arable and forage crops.)

Fruit Vines and Hops: P Index 2, K Index 2, Mg Index 2

(Note: Cider apples respond to K Index 3, Mg Index 3)

A lime recommendation is usually for a 20cm depth of cultivated soil or a 15cm depth of grassland soil. Where soil is acid below 20 cm and soils are ploughed for arable crops, a proportionately larger quantity of lime should be applied. However, if more than 10 t/ha is needed, half should be deeply cultivated into the soil and ploughed down, with the remainder applied to the surface and worked in.

For established grassland or other situations where there is no, or only minimal soil cultivation, no more than 7.5 t/ha of lime should be applied in one application. In these situations, applications of lime change the pH below the surface very slowly. Consequently, the underlying soil should not be allowed to become too acidic because this will affect the root growth and thus limit nutrient and water uptake, which will adversely affect yield.

Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne. NRM is a UKAS accredited laboratory to ISO/IEC 17025

Report continued.....

DATE 27th May 2022 SAMPLES FROM GM11455GMGE WARDELL ARMSTRONG LLP
CITY QUADRANT
11 WATERLOO SQUARE
NEWCASTLE UPON TYNE
NE1 4DP

SAMPLED BY KIRSTY ELLIOTT

NT54881

Report reference 69150/22

Fertiliser Recommendations

Field Name / Ref / Soil Type	oil Type Last Crop / Next Crop P		P205	K20	MgO	L	Lime (Arable)	(Grass)	
NG-YG-NOS 80 H1	Not Given / Not Given	Units/Acre				T/Ac	0	0	
370232 / Heavy		Kg/Ha				Te/Ha	0	0	
Field Name / Ref / Soil Type	Last Crop / Next Crop		P205	<i>K</i> 20	MgO	L	Lime (Arable)	(Grass)	
NG-YG-NOS 80 H2	Not Given / Not Given	Units/Acre				T/Ac	0	0	
370233 / Heavy		Kg/Ha				Te/Ha	0	0	
Field Name / Ref / Soil Type	Last Crop / Next Crop		P205	K20	MgO	L	Lime (Arable)	(Grass)	
NG-YG-NOS 80 H3	Not Given / Not Given	Units/Acre				T/Ac	0	0	
370234 / Heavy		Kg/Ha				Te/Ha	0	0	
Field Name / Ref / Soil Type	Last Crop / Next Crop		P205	K20	MgO	L	Lime (Arable)	(Grass)	
NG-YG-NOS 107 H1	Not Given / Not Given	Units/Acre				T/Ac	0	0	
370235 / Medium		Kg/Ha				Te/Ha	0	0	
Field Name / Ref / Soil Type	Last Crop / Next Crop		P205	K20	MgO	L	Lime (Arable)	(Grass)	
NG-YG-NOS 107 H2	Not Given / Not Given	Units/Acre				T/Ac	0	0	
370236 / Medium		Kg/Ha				Te/Ha	0	0	

Fertiliser recommendations are based on AHDB RB209 (Ninth Edition). If a nutrient is deficient and no recommendation is given, either no recommendation is given in RB209 or we have insufficient data to give a recommendation. Apply Lime to the nearest half Ton / Tonne.

NRM is a UKAS accredited laboratory to ISO/IEC 17025

Page intentionally blank

National Grid plc National Grid House, Warwick Technology Park, Gallows Hill, Warwick. CV34 6DA United Kingdom

Registered in England and Wales No. 4031152